These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 29580994)
1. Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Mittal H; Kumar V; Alhassan SM; Ray SS Int J Biol Macromol; 2018 Jul; 114():283-294. PubMed ID: 29580994 [TBL] [Abstract][Full Text] [Related]
2. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Mittal H; Jindal R; Kaith BS; Maity A; Ray SS Carbohydr Polym; 2015 Jan; 115():617-28. PubMed ID: 25439940 [TBL] [Abstract][Full Text] [Related]
3. Flocculation characteristics and biodegradation studies of Gum ghatti based hydrogels. Mittal H; Mishra SB; Mishra AK; Kaith BS; Jindal R Int J Biol Macromol; 2013 Jul; 58():37-46. PubMed ID: 23541560 [TBL] [Abstract][Full Text] [Related]
4. Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel. Mittal H; Maity A; Ray SS Int J Biol Macromol; 2015 Aug; 79():8-20. PubMed ID: 25934107 [TBL] [Abstract][Full Text] [Related]
5. Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Mittal H; Mishra SB; Mishra AK; Kaith BS; Jindal R; Kalia S Carbohydr Polym; 2013 Oct; 98(1):397-404. PubMed ID: 23987360 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels. Mittal H; Jindal R; Kaith BS; Maity A; Ray SS Carbohydr Polym; 2014 Dec; 114():321-329. PubMed ID: 25263897 [TBL] [Abstract][Full Text] [Related]
7. Removal of Congo red from aqueous solution by adsorption using gum ghatti and acrylamide graft copolymer coated with zero valent iron. Goddeti SMR; Bhaumik M; Maity A; Ray SS Int J Biol Macromol; 2020 Apr; 149():21-30. PubMed ID: 31981661 [TBL] [Abstract][Full Text] [Related]
8. Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. Pandey S; Do JY; Kim J; Kang M Int J Biol Macromol; 2020 Jan; 143():60-75. PubMed ID: 31812747 [TBL] [Abstract][Full Text] [Related]
9. The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models. Mittal H; Maity A; Sinha Ray S J Phys Chem B; 2015 Feb; 119(5):2026-39. PubMed ID: 25564870 [TBL] [Abstract][Full Text] [Related]
10. A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Mittal H; Ray SS Int J Biol Macromol; 2016 Jul; 88():66-80. PubMed ID: 26997239 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient and selective removal of anionic dyes from aqueous solutions using polyacrylamide/peach gum polysaccharide/attapulgite composite hydrogels with positively charged hybrid network. Yang H; Wu K; Zhu J; Lin Y; Ma X; Cao Z; Ma W; Gong F; Liu C; Pan J Int J Biol Macromol; 2024 May; 266(Pt 1):131213. PubMed ID: 38552690 [TBL] [Abstract][Full Text] [Related]
12. Gum ghatti and Fe₃O₄ magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Mittal H; Mishra SB Carbohydr Polym; 2014 Jan; 101():1255-64. PubMed ID: 24299899 [TBL] [Abstract][Full Text] [Related]
13. Efficient liquid phase confiscation of nile blue using a novel hybrid nanocomposite synthesized from guar gum-polyacrylamide and erbium oxide. Hussain D; Khan SA; Khan TA; Alharthi SS Sci Rep; 2022 Aug; 12(1):14656. PubMed ID: 36038589 [TBL] [Abstract][Full Text] [Related]
14. Polypyrrole-coated gum ghatti-grafted poly(acrylamide) composite for the selective removal of hexavalent chromium from waste water. Goddeti SMR; Maity A; Ray SS Int J Biol Macromol; 2020 Dec; 164():2851-2860. PubMed ID: 32758606 [TBL] [Abstract][Full Text] [Related]