BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 29581220)

  • 1. Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome.
    Smits LP; Kootte RS; Levin E; Prodan A; Fuentes S; Zoetendal EG; Wang Z; Levison BS; Cleophas MCP; Kemper EM; Dallinga-Thie GM; Groen AK; Joosten LAB; Netea MG; Stroes ESG; de Vos WM; Hazen SL; Nieuwdorp M
    J Am Heart Assoc; 2018 Mar; 7(7):. PubMed ID: 29581220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans.
    Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL
    J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fecal Microbiome Composition Does Not Predict Diet-Induced TMAO Production in Healthy Adults.
    Ferrell M; Bazeley P; Wang Z; Levison BS; Li XS; Jia X; Krauss RM; Knight R; Lusis AJ; Garcia-Garcia JC; Hazen SL; Tang WHW
    J Am Heart Assoc; 2021 Nov; 10(21):e021934. PubMed ID: 34713713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study.
    Fu BC; Hullar MAJ; Randolph TW; Franke AA; Monroe KR; Cheng I; Wilkens LR; Shepherd JA; Madeleine MM; Le Marchand L; Lim U; Lampe JW
    Am J Clin Nutr; 2020 Jun; 111(6):1226-1234. PubMed ID: 32055828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study.
    Tripolt NJ; Leber B; Triebl A; Köfeler H; Stadlbauer V; Sourij H
    Atherosclerosis; 2015 Sep; 242(1):141-4. PubMed ID: 26188537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women.
    Wang Z; Bergeron N; Levison BS; Li XS; Chiu S; Jia X; Koeth RA; Li L; Wu Y; Tang WHW; Krauss RM; Hazen SL
    Eur Heart J; 2019 Feb; 40(7):583-594. PubMed ID: 30535398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency.
    Macpherson ME; Hov JR; Ueland T; Dahl TB; Kummen M; Otterdal K; Holm K; Berge RK; Mollnes TE; Trøseid M; Halvorsen B; Aukrust P; Fevang B; Jørgensen SF
    Front Immunol; 2020; 11():574500. PubMed ID: 33042155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk.
    Li XS; Wang Z; Cajka T; Buffa JA; Nemet I; Hurd AG; Gu X; Skye SM; Roberts AB; Wu Y; Li L; Shahen CJ; Wagner MA; Hartiala JA; Kerby RL; Romano KA; Han Y; Obeid S; Lüscher TF; Allayee H; Rey FE; DiDonato JA; Fiehn O; Tang WHW; Hazen SL
    JCI Insight; 2018 Mar; 3(6):. PubMed ID: 29563342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes to trimethylamine-N-oxide and its precursors in nascent metabolic syndrome.
    Lent-Schochet D; Silva R; McLaughlin M; Huet B; Jialal I
    Horm Mol Biol Clin Investig; 2018 Apr; 35(2):. PubMed ID: 29668463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery.
    Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT
    Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
    Koeth RA; Wang Z; Levison BS; Buffa JA; Org E; Sheehy BT; Britt EB; Fu X; Wu Y; Li L; Smith JD; DiDonato JA; Chen J; Li H; Wu GD; Lewis JD; Warrier M; Brown JM; Krauss RM; Tang WH; Bushman FD; Lusis AJ; Hazen SL
    Nat Med; 2013 May; 19(5):576-85. PubMed ID: 23563705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.
    Romano KA; Vivas EI; Amador-Noguez D; Rey FE
    mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota.
    Day-Walsh P; Shehata E; Saha S; Savva GM; Nemeckova B; Speranza J; Kellingray L; Narbad A; Kroon PA
    Eur J Nutr; 2021 Oct; 60(7):3987-3999. PubMed ID: 33934200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice.
    Yu ZL; Zhang LY; Jiang XM; Xue CH; Chi N; Zhang TT; Wang YM
    J Food Sci; 2020 Jul; 85(7):2207-2215. PubMed ID: 32572979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene (
    Dalla Via A; Gargari G; Taverniti V; Rondini G; Velardi I; Gambaro V; Visconti GL; De Vitis V; Gardana C; Ragg E; Pinto A; Riso P; Guglielmetti S
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31881690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Lean Pork on Microbiota and Microbial-Metabolite Trimethylamine-N-Oxide: A Randomized Controlled Non-Inferiority Feeding Trial Based on the Dietary Guidelines for Americans.
    Dhakal S; Moazzami Z; Perry C; Dey M
    Mol Nutr Food Res; 2022 May; 66(9):e2101136. PubMed ID: 35182101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulating Gut Microbiota Metabolite Trimethylamine N-Oxide (TMAO) and Changes in Bone Density in Response to Weight Loss Diets: The POUNDS Lost Trial.
    Zhou T; Heianza Y; Chen Y; Li X; Sun D; DiDonato JA; Pei X; LeBoff MS; Bray GA; Sacks FM; Qi L
    Diabetes Care; 2019 Aug; 42(8):1365-1371. PubMed ID: 31332027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyphenols from hickory nut reduce the occurrence of atherosclerosis in mice by improving intestinal microbiota and inhibiting trimethylamine N-oxide production.
    Jiang C; Wang S; Wang Y; Wang K; Huang C; Gao F; Peng Hu H; Deng Y; Zhang W; Zheng J; Huang J; Li Y
    Phytomedicine; 2024 Jun; 128():155349. PubMed ID: 38522315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gut Colonization with Methanogenic Archaea Lowers Plasma Trimethylamine N-oxide Concentrations in Apolipoprotein e-/- Mice.
    Ramezani A; Nolin TD; Barrows IR; Serrano MG; Buck GA; Regunathan-Shenk R; West RE; Latham PS; Amdur R; Raj DS
    Sci Rep; 2018 Oct; 8(1):14752. PubMed ID: 30283097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.