BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29581267)

  • 21. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T; Elcock AH
    J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A molecular dynamics ensemble-based approach for the mapping of druggable binding sites.
    Ivetac A; McCammon JA
    Methods Mol Biol; 2012; 819():3-12. PubMed ID: 22183526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GPCRs through the keyhole: the role of protein flexibility in ligand binding to β-adrenoceptors.
    Emtage AL; Mistry SN; Fischer PM; Kellam B; Laughton CA
    J Biomol Struct Dyn; 2017 Sep; 35(12):2604-2619. PubMed ID: 27532213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations.
    Kuzmanic A; Bowman GR; Juarez-Jimenez J; Michel J; Gervasio FL
    Acc Chem Res; 2020 Mar; 53(3):654-661. PubMed ID: 32134250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmark Sets for Binding Hot Spot Identification in Fragment-Based Ligand Discovery.
    Wakefield AE; Yueh C; Beglov D; Castilho MS; Kozakov D; Keserű GM; Whitty A; Vajda S
    J Chem Inf Model; 2020 Dec; 60(12):6612-6623. PubMed ID: 33291870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational method to identify druggable binding sites that target protein-protein interactions.
    Li H; Kasam V; Tautermann CS; Seeliger D; Vaidehi N
    J Chem Inf Model; 2014 May; 54(5):1391-400. PubMed ID: 24762202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TRAPP: a tool for analysis of transient binding pockets in proteins.
    Kokh DB; Richter S; Henrich S; Czodrowski P; Rippmann F; Wade RC
    J Chem Inf Model; 2013 May; 53(5):1235-52. PubMed ID: 23621586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators.
    Hart KM; Moeder KE; Ho CMW; Zimmerman MI; Frederick TE; Bowman GR
    PLoS One; 2017; 12(6):e0178678. PubMed ID: 28570708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.
    Tan YS; Spring DR; Abell C; Verma CS
    J Chem Theory Comput; 2015 Jul; 11(7):3199-210. PubMed ID: 26575757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the role of the phospholipid ligand in endothelial protein C receptor: a molecular dynamics study.
    Chiappori F; Merelli I; Milanesi L; Rovida E
    Proteins; 2010 Sep; 78(12):2679-90. PubMed ID: 20589634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryptic Pockets Repository through Pocket Dynamics Tracking and Metadynamics on Essential Dynamics Space: Applications to Mcl-1.
    Benabderrahmane M; Bureau R; Voisin-Chiret AS; Santos JSO
    J Chem Inf Model; 2021 Nov; 61(11):5581-5588. PubMed ID: 34748701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Application of SiteMap and Site Finder for Focused Cryptic Pocket Identification.
    Ge Y; Pande V; Seierstad MJ; Damm-Ganamet KL
    J Phys Chem B; 2024 Jul; 128(26):6233-6245. PubMed ID: 38904218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.
    Zerbe BS; Hall DR; Vajda S; Whitty A; Kozakov D
    J Chem Inf Model; 2012 Aug; 52(8):2236-44. PubMed ID: 22770357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH.
    Comitani F; Gervasio FL
    J Chem Theory Comput; 2018 Jun; 14(6):3321-3331. PubMed ID: 29768914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces.
    Bohnuud T; Kozakov D; Vajda S
    PLoS Comput Biol; 2014 Oct; 10(10):e1003872. PubMed ID: 25275445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A systematic analysis of the effect of small-molecule binding on protein flexibility of the ligand-binding sites.
    Yang CY; Wang R; Wang S
    J Med Chem; 2005 Sep; 48(18):5648-50. PubMed ID: 16134931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of calcium-binding sites by combining loop-modeling with machine learning.
    Liu T; Altman RB
    BMC Struct Biol; 2009 Dec; 9():72. PubMed ID: 20003365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.