These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29581406)

  • 1. Staphylococcus aureus Utilizes Host-Derived Lipoprotein Particles as Sources of Fatty Acids.
    Delekta PC; Shook JC; Lydic TA; Mulks MH; Hammer ND
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29581406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical Relevance of Type II Fatty Acid Synthesis Bypass in Staphylococcus aureus.
    Gloux K; Guillemet M; Soler C; Morvan C; Halpern D; Pourcel C; Vu Thien H; Lamberet G; Gruss A
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28193654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Lipoprotein Particles from Chicken Egg Yolk for the Study of Bacterial Pathogen Fatty Acid Incorporation into Membrane Phospholipids.
    Delekta PC; Lydic TA; Hammer ND
    J Vis Exp; 2019 May; (147):. PubMed ID: 31157784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exogenous Fatty Acids Remodel Staphylococcus aureus Lipid Composition through Fatty Acid Kinase.
    DeMars Z; Singh VK; Bose JL
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32366591
    [No Abstract]   [Full Text] [Related]  

  • 5. Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials.
    Morvan C; Halpern D; Kénanian G; Hays C; Anba-Mondoloni J; Brinster S; Kennedy S; Trieu-Cuot P; Poyart C; Lamberet G; Gloux K; Gruss A
    Nat Commun; 2016 Oct; 7():12944. PubMed ID: 27703138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (p)ppGpp/GTP and Malonyl-CoA Modulate Staphylococcus aureus Adaptation to FASII Antibiotics and Provide a Basis for Synergistic Bi-Therapy.
    Pathania A; Anba-Mondoloni J; Gominet M; Halpern D; Dairou J; Dupont L; Lamberet G; Trieu-Cuot P; Gloux K; Gruss A
    mBio; 2021 Feb; 12(1):. PubMed ID: 33531402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Staphylococcus aureus FASII bypass escape route from FASII inhibitors.
    Morvan C; Halpern D; Kénanian G; Pathania A; Anba-Mondoloni J; Lamberet G; Gruss A; Gloux K
    Biochimie; 2017 Oct; 141():40-46. PubMed ID: 28728970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the Impact of Bacterial Lipases, Human Serum Albumin, and FASII Inhibition on the Utilization of Exogenous Fatty Acids by
    Pruitt EL; Zhang R; Ross DH; Ashford NK; Chen X; Alonzo F; Bush MF; Werth BJ; Xu L
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425828
    [No Abstract]   [Full Text] [Related]  

  • 9. A FASII Inhibitor Prevents Staphylococcal Evasion of Daptomycin by Inhibiting Phospholipid Decoy Production.
    Pee CJE; Pader V; Ledger EVK; Edwards AM
    Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30718253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essentiality of FASII pathway for Staphylococcus aureus.
    Balemans W; Lounis N; Gilissen R; Guillemont J; Simmen K; Andries K; Koul A
    Nature; 2010 Jan; 463(7279):E3; discussion E4. PubMed ID: 20090698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permissive Fatty Acid Incorporation Promotes Staphylococcal Adaptation to FASII Antibiotics in Host Environments.
    Kénanian G; Morvan C; Weckel A; Pathania A; Anba-Mondoloni J; Halpern D; Gaillard M; Solgadi A; Dupont L; Henry C; Poyart C; Fouet A; Lamberet G; Gloux K; Gruss A
    Cell Rep; 2019 Dec; 29(12):3974-3982.e4. PubMed ID: 31851927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site.
    Frank MW; Yao J; Batte JL; Gullett JM; Subramanian C; Rosch JW; Rock CO
    mBio; 2020 May; 11(3):. PubMed ID: 32430471
    [No Abstract]   [Full Text] [Related]  

  • 13. Elucidating the impact of bacterial lipases, human serum albumin, and FASII inhibition on the utilization of exogenous fatty acids by
    Pruitt EL; Zhang R; Ross DH; Ashford NK; Chen X; Alonzo F; Bush MF; Werth BJ; Xu L
    mSphere; 2023 Dec; 8(6):e0036823. PubMed ID: 38014966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors.
    Parsons JB; Frank MW; Subramanian C; Saenkham P; Rock CO
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15378-83. PubMed ID: 21876172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complestatin exerts antibacterial activity by the inhibition of fatty acid synthesis.
    Kwon YJ; Kim HJ; Kim WG
    Biol Pharm Bull; 2015; 38(5):715-21. PubMed ID: 25947917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics.
    Yao J; Rock CO
    J Biol Chem; 2015 Mar; 290(10):5940-6. PubMed ID: 25648887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper Resistance Promotes Fitness of Methicillin-Resistant Staphylococcus aureus during Urinary Tract Infection.
    Saenkham-Huntsinger P; Hyre AN; Hanson BS; Donati GL; Adams LG; Ryan C; Londoño A; Moustafa AM; Planet PJ; Subashchandrabose S
    mBio; 2021 Oct; 12(5):e0203821. PubMed ID: 34488457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens.
    Brinster S; Lamberet G; Staels B; Trieu-Cuot P; Gruss A; Poyart C
    Nature; 2009 Mar; 458(7234):83-6. PubMed ID: 19262672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous fatty acid metabolism in bacteria.
    Yao J; Rock CO
    Biochimie; 2017 Oct; 141():30-39. PubMed ID: 28668270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redirection of Metabolism in Response to Fatty Acid Kinase in Staphylococcus aureus.
    DeMars Z; Bose JL
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30012726
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.