These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29581419)

  • 21. Lateral transition-metal dichalcogenide heterostructures for high efficiency thermoelectric devices.
    Bharadwaj S; Ramasubramaniam A; Ram-Mohan LR
    Nanoscale; 2022 Aug; 14(32):11750-11759. PubMed ID: 35920209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene-Transition Metal Dichalcogenide Heterojunctions for Scalable and Low-Power Complementary Integrated Circuits.
    Yeh CH; Liang ZY; Lin YC; Chen HC; Fan T; Ma CH; Chu YH; Suenaga K; Chiu PW
    ACS Nano; 2020 Jan; 14(1):985-992. PubMed ID: 31904930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers.
    Velický M; Donnelly GE; Hendren WR; McFarland S; Scullion D; DeBenedetti WJI; Correa GC; Han Y; Wain AJ; Hines MA; Muller DA; Novoselov KS; Abruña HD; Bowman RM; Santos EJG; Huang F
    ACS Nano; 2018 Oct; 12(10):10463-10472. PubMed ID: 30265515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide.
    Li D; Cheng R; Zhou H; Wang C; Yin A; Chen Y; Weiss NO; Huang Y; Duan X
    Nat Commun; 2015 Jul; 6():7509. PubMed ID: 26130491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study of lateral Schottky contacts in WSe2 and MoS2 field effect transistors using scanning photocurrent microscopy.
    Yi Y; Wu C; Liu H; Zeng J; He H; Wang J
    Nanoscale; 2015 Oct; 7(38):15711-8. PubMed ID: 26350431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous Color-Tunable Light-Emitting Devices Based on Compositionally Graded Monolayer Transition Metal Dichalcogenide Alloys.
    Pu J; Ou H; Yamada T; Wada N; Naito H; Ogura H; Endo T; Liu Z; Irisawa T; Yanagi K; Nakanishi Y; Gao Y; Maruyama M; Okada S; Shinokita K; Matsuda K; Miyata Y; Takenobu T
    Adv Mater; 2022 Nov; 34(44):e2203250. PubMed ID: 36086880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controllable Schottky barriers between MoS2 and permalloy.
    Wang W; Liu Y; Tang L; Jin Y; Zhao T; Xiu F
    Sci Rep; 2014 Nov; 4():6928. PubMed ID: 25370911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Efficient Experimental Approach to Evaluate Metal to 2D Semiconductor Interfaces in Vertical Diodes with Asymmetric Metal Contacts.
    Kim S; Shin DH; Kim YS; Lee IH; Lee CW; Seo S; Jung S
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27705-27712. PubMed ID: 34082527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors.
    Fan ZQ; Jiang XW; Chen J; Luo JW
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19271-19277. PubMed ID: 29737827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.
    Zhao M; Song P; Teng J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44102-44108. PubMed ID: 30479118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal Light Emission from Monolayer MoS
    Dobusch L; Schuler S; Perebeinos V; Mueller T
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28628254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulating Optoelectronic Properties of Two-Dimensional Transition Metal Dichalcogenide Semiconductors by Photoinduced Charge Transfer.
    Choi J; Zhang H; Choi JH
    ACS Nano; 2016 Jan; 10(1):1671-80. PubMed ID: 26720839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Al
    McVay E; Zubair A; Lin Y; Nourbakhsh A; Palacios T
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57987-57995. PubMed ID: 33320539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance Limits of an Alternating Current Electroluminescent Device.
    Wang V; Zhao Y; Javey A
    Adv Mater; 2021 Jan; 33(2):e2005635. PubMed ID: 33270301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy-Level Alignment at Interfaces between Transition-Metal Dichalcogenide Monolayers and Metal Electrodes Studied with Kelvin Probe Force Microscopy.
    Markeev PA; Najafidehaghani E; Gan Z; Sotthewes K; George A; Turchanin A; de Jong MP
    J Phys Chem C Nanomater Interfaces; 2021 Jun; 125(24):13551-13559. PubMed ID: 34239657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.
    Bellus MZ; Ceballos F; Chiu HY; Zhao H
    ACS Nano; 2015 Jun; 9(6):6459-64. PubMed ID: 26046238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2.
    Yang W; Shang J; Wang J; Shen X; Cao B; Peimyoo N; Zou C; Chen Y; Wang Y; Cong C; Huang W; Yu T
    Nano Lett; 2016 Mar; 16(3):1560-7. PubMed ID: 26854533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of field-effect transistors based on Nb(x)W(1-x)S2 monolayers.
    Feng LP; Jiang WZ; Su J; Zhou LQ; Liu ZT
    Nanoscale; 2016 Mar; 8(12):6507-13. PubMed ID: 26935307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical vapor deposition growth of crystalline monolayer MoSe2.
    Wang X; Gong Y; Shi G; Chow WL; Keyshar K; Ye G; Vajtai R; Lou J; Liu Z; Ringe E; Tay BK; Ajayan PM
    ACS Nano; 2014 May; 8(5):5125-31. PubMed ID: 24680389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dark-exciton valley dynamics in transition metal dichalcogenide alloy monolayers.
    Bragança H; Riche F; Qu F; Lopez-Richard V; Marques GE
    Sci Rep; 2019 Mar; 9(1):4575. PubMed ID: 30872667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.