These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 29581429)
1. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Tang Y; Li Y; Fung V; Jiang DE; Huang W; Zhang S; Iwasawa Y; Sakata T; Nguyen L; Zhang X; Frenkel AI; Tao FF Nat Commun; 2018 Mar; 9(1):1231. PubMed ID: 29581429 [TBL] [Abstract][Full Text] [Related]
2. Low-Temperature Transformation of Methane to Methanol on Pd Huang W; Zhang S; Tang Y; Li Y; Nguyen L; Li Y; Shan J; Xiao D; Gagne R; Frenkel AI; Tao FF Angew Chem Int Ed Engl; 2016 Oct; 55(43):13441-13445. PubMed ID: 27717086 [TBL] [Abstract][Full Text] [Related]
3. Selective Catalytic Oxidation of Methane to Methanol in Aqueous Medium over Copper Cations Promoted by Atomically Dispersed Rhodium on TiO Gu F; Qin X; Li M; Xu Y; Hong S; Ouyang M; Giannakakis G; Cao S; Peng M; Xie J; Wang M; Han D; Xiao D; Wang X; Wang Z; Ma D Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202201540. PubMed ID: 35199428 [TBL] [Abstract][Full Text] [Related]
4. Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. Wu B; Lin T; Huang M; Li S; Li J; Yu X; Yang R; Sun F; Jiang Z; Sun Y; Zhong L Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202204116. PubMed ID: 35362182 [TBL] [Abstract][Full Text] [Related]
5. Single-Atom High-Temperature Catalysis on a Rh Tang Y; Fung V; Zhang X; Li Y; Nguyen L; Sakata T; Higashi K; Jiang DE; Tao FF J Am Chem Soc; 2021 Oct; 143(40):16566-16579. PubMed ID: 34590856 [TBL] [Abstract][Full Text] [Related]
6. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Shan J; Li M; Allard LF; Lee S; Flytzani-Stephanopoulos M Nature; 2017 Nov; 551(7682):605-608. PubMed ID: 29189776 [TBL] [Abstract][Full Text] [Related]
7. Low-temperature activation of methane on doped single atoms: descriptor and prediction. Fung V; Tao FF; Jiang DE Phys Chem Chem Phys; 2018 Sep; 20(35):22909-22914. PubMed ID: 30152484 [TBL] [Abstract][Full Text] [Related]
8. Synergy of Single-Atom Ni Tang Y; Wei Y; Wang Z; Zhang S; Li Y; Nguyen L; Li Y; Zhou Y; Shen W; Tao FF; Hu P J Am Chem Soc; 2019 May; 141(18):7283-7293. PubMed ID: 31021087 [TBL] [Abstract][Full Text] [Related]
10. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. An B; Li Z; Wang Z; Zeng X; Han X; Cheng Y; Sheveleva AM; Zhang Z; Tuna F; McInnes EJL; Frogley MD; Ramirez-Cuesta AJ; S Natrajan L; Wang C; Lin W; Yang S; Schröder M Nat Mater; 2022 Aug; 21(8):932-938. PubMed ID: 35773491 [TBL] [Abstract][Full Text] [Related]
11. Bond Activation by Metal-Carbene Complexes in the Gas Phase. Zhou S; Li J; Schlangen M; Schwarz H Acc Chem Res; 2016 Mar; 49(3):494-502. PubMed ID: 26870872 [TBL] [Abstract][Full Text] [Related]
12. Water Microdroplets-Initiated Methane Oxidation. Song X; Basheer C; Zare RN J Am Chem Soc; 2023 Dec; 145(50):27198-27204. PubMed ID: 38054976 [TBL] [Abstract][Full Text] [Related]
13. Conversion of methane to methanol with a bent mono(μ-oxo)dinickel anchored on the internal surfaces of micropores. Shan J; Huang W; Nguyen L; Yu Y; Zhang S; Li Y; Frenkel AI; Tao FF Langmuir; 2014 Jul; 30(28):8558-69. PubMed ID: 24896721 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H-ZSM-5 zeolite. Wu JF; Yu SM; Wang WD; Fan YX; Bai S; Zhang CW; Gao Q; Huang J; Wang W J Am Chem Soc; 2013 Sep; 135(36):13567-73. PubMed ID: 23981101 [TBL] [Abstract][Full Text] [Related]
15. Selective Methane Oxidation to Acetic Acid Using Molecular Oxygen over a Mono-Copper Hydroxyl Catalyst. Antil N; Chauhan M; Akhtar N; Kalita R; Manna K J Am Chem Soc; 2023 Mar; 145(11):6156-6165. PubMed ID: 36897313 [TBL] [Abstract][Full Text] [Related]
16. Highly Selective Synthesis of Acetic Acid from Hydroxyl-Mediated Oxidation of Methane at Low Temperatures. Wu B; Yin H; Ma X; Liu R; He B; Li H; Zeng J Angew Chem Int Ed Engl; 2024 Sep; ():e202412995. PubMed ID: 39222321 [TBL] [Abstract][Full Text] [Related]
17. Direct and Selective Photocatalytic Oxidation of CH Song H; Meng X; Wang S; Zhou W; Wang X; Kako T; Ye J J Am Chem Soc; 2019 Dec; 141(51):20507-20515. PubMed ID: 31834789 [TBL] [Abstract][Full Text] [Related]
18. Topological Transformation of Mg-Containing Layered Double Hydroxide Nanosheets for Efficient Photodriven CH Xu Y; Sun X; Wang X; He L; Wharmby MT; Hua X; Zhao Y; Song YF Chemistry; 2021 Sep; 27(52):13211-13220. PubMed ID: 34319601 [TBL] [Abstract][Full Text] [Related]
19. Applied reaction dynamics: efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh111. Gibson KD; Viste M; Sibener SJ J Chem Phys; 2006 Oct; 125(13):133401. PubMed ID: 17029475 [TBL] [Abstract][Full Text] [Related]
20. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Bai S; Liu F; Huang B; Li F; Lin H; Wu T; Sun M; Wu J; Shao Q; Xu Y; Huang X Nat Commun; 2020 Feb; 11(1):954. PubMed ID: 32075982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]