These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 29581440)
21. Vitamin D-dependent chromatin association of CTCF in human monocytes. Neme A; Seuter S; Carlberg C Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350 [TBL] [Abstract][Full Text] [Related]
22. Epigenome editing strategies for the functional annotation of CTCF insulators. Tarjan DR; Flavahan WA; Bernstein BE Nat Commun; 2019 Sep; 10(1):4258. PubMed ID: 31534142 [TBL] [Abstract][Full Text] [Related]
23. A subset of topologically associating domains fold into mesoscale core-periphery networks. Huang H; Chen ST; Titus KR; Emerson DJ; Bassett DS; Phillips-Cremins JE Sci Rep; 2019 Jul; 9(1):9526. PubMed ID: 31266973 [TBL] [Abstract][Full Text] [Related]
24. Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf: IMPLICATIONS FOR TRANSCRIPTIONAL REGULATION. Monte E; Rosa-Garrido M; Karbassi E; Chen H; Lopez R; Rau CD; Wang J; Nelson SF; Wu Y; Stefani E; Lusis AJ; Wang Y; Kurdistani SK; Franklin S; Vondriska TM J Biol Chem; 2016 Jul; 291(30):15428-46. PubMed ID: 27226577 [TBL] [Abstract][Full Text] [Related]
25. Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Li M; Huang H; Wang B; Jiang S; Guo H; Zhu L; Wu S; Liu J; Wang L; Lan X; Zhang W; Zhu J; Li F; Tan J; Mao Z; Liu C; Ji J; Ding J; Zhang K; Yuan J; Liu Y; Ouyang H Nat Commun; 2022 Mar; 13(1):1293. PubMed ID: 35277509 [TBL] [Abstract][Full Text] [Related]
26. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. Kai Y; Andricovich J; Zeng Z; Zhu J; Tzatsos A; Peng W Nat Commun; 2018 Oct; 9(1):4221. PubMed ID: 30310060 [TBL] [Abstract][Full Text] [Related]
27. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization. Nikumbh S; Pfeifer N BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341 [TBL] [Abstract][Full Text] [Related]
28. CTCF: a Swiss-army knife for genome organization and transcription regulation. Braccioli L; de Wit E Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740 [TBL] [Abstract][Full Text] [Related]
29. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop. Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313 [TBL] [Abstract][Full Text] [Related]
30. Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation. Chung IM; Ketharnathan S; Kim SH; Thiruvengadam M; Rani MK; Rajakumar G Genes (Basel); 2016 Sep; 7(10):. PubMed ID: 27669308 [TBL] [Abstract][Full Text] [Related]
31. Learning the Formation Mechanism of Domain-Level Chromatin States with Epigenomics Data. Xie WJ; Zhang B Biophys J; 2019 May; 116(10):2047-2056. PubMed ID: 31053260 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Kloetgen A; Thandapani P; Ntziachristos P; Ghebrechristos Y; Nomikou S; Lazaris C; Chen X; Hu H; Bakogianni S; Wang J; Fu Y; Boccalatte F; Zhong H; Paietta E; Trimarchi T; Zhu Y; Van Vlierberghe P; Inghirami GG; Lionnet T; Aifantis I; Tsirigos A Nat Genet; 2020 Apr; 52(4):388-400. PubMed ID: 32203470 [TBL] [Abstract][Full Text] [Related]
33. A computational approach for the functional classification of the epigenome. Gandolfi F; Tramontano A Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787 [TBL] [Abstract][Full Text] [Related]
34. From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect. ChiliĆski M; Sengupta K; Plewczynski D Semin Cell Dev Biol; 2022 Jan; 121():171-185. PubMed ID: 34429265 [TBL] [Abstract][Full Text] [Related]
35. On Epigenetic Plasticity and Genome Topology. Lazaris C; Aifantis I; Tsirigos A Trends Cancer; 2020 Mar; 6(3):177-180. PubMed ID: 32101721 [TBL] [Abstract][Full Text] [Related]
36. Chromatin loop dynamics during cellular differentiation are associated with changes to both anchor and internal regulatory features. Bond ML; Davis ES; Quiroga IY; Dey A; Kiran M; Love MI; Won H; Phanstiel DH Genome Res; 2023 Aug; 33(8):1258-1268. PubMed ID: 37699658 [TBL] [Abstract][Full Text] [Related]
37. Chromatin architecture reorganization during neuronal cell differentiation in Chathoth KT; Zabet NR Genome Res; 2019 Apr; 29(4):613-625. PubMed ID: 30709849 [TBL] [Abstract][Full Text] [Related]
38. Global Genome Conformational Programming during Neuronal Development Is Associated with CTCF and Nuclear FGFR1-The Genome Archipelago Model. Decker B; Liput M; Abdellatif H; Yergeau D; Bae Y; Jornet JM; Stachowiak EK; Stachowiak MK Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396256 [TBL] [Abstract][Full Text] [Related]
39. Disease-Associated Short Tandem Repeats Co-localize with Chromatin Domain Boundaries. Sun JH; Zhou L; Emerson DJ; Phyo SA; Titus KR; Gong W; Gilgenast TG; Beagan JA; Davidson BL; Tassone F; Phillips-Cremins JE Cell; 2018 Sep; 175(1):224-238.e15. PubMed ID: 30173918 [TBL] [Abstract][Full Text] [Related]
40. An RNA Polymerase III General Transcription Factor Engages in Cell Type-Specific Chromatin Looping. de Llobet Cucalon L; Di Vona C; Morselli M; Vezzoli M; Montanini B; Teichmann M; de la Luna S; Ferrari R Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216376 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]