BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29581463)

  • 1. Engineered 3D vascular and neuronal networks in a microfluidic platform.
    Osaki T; Sivathanu V; Kamm RD
    Sci Rep; 2018 Mar; 8(1):5168. PubMed ID: 29581463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions.
    Uwamori H; Ono Y; Yamashita T; Arai K; Sudo R
    Microvasc Res; 2019 Mar; 122():60-70. PubMed ID: 30472038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system.
    Yang K; Park HJ; Han S; Lee J; Ko E; Kim J; Lee JS; Yu JH; Song KY; Cheong E; Cho SR; Chung S; Cho SW
    Biomaterials; 2015 Sep; 63():177-88. PubMed ID: 26113074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons.
    Mo SJ; Lee JH; Kye HG; Lee JM; Kim EJ; Geum D; Sun W; Chung BG
    Analyst; 2020 Apr; 145(8):3081-3089. PubMed ID: 32150196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial Cells: Co-culture Spheroids.
    Kanczler JM; Wells JA; Oreffo ROC
    Methods Mol Biol; 2021; 2206():47-56. PubMed ID: 32754810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous induction of vasculature and neuronal network formation on a chip reveals a dynamic interrelationship between cell types.
    Isosaari L; Vuorenpää H; Yrjänäinen A; Kapucu FE; Kelloniemi M; Pakarinen TK; Miettinen S; Narkilahti S
    Cell Commun Signal; 2023 Jun; 21(1):132. PubMed ID: 37316873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of stable capillary networks using a microfluidic device.
    Sudo R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():350-3. PubMed ID: 26736271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development.
    Sances S; Ho R; Vatine G; West D; Laperle A; Meyer A; Godoy M; Kay PS; Mandefro B; Hatata S; Hinojosa C; Wen N; Sareen D; Hamilton GA; Svendsen CN
    Stem Cell Reports; 2018 Apr; 10(4):1222-1236. PubMed ID: 29576540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell type-specific changes in transcriptomic profiles of endothelial cells, iPSC-derived neurons and astrocytes cultured on microfluidic chips.
    Middelkamp HHT; Verboven AHA; De Sá Vivas AG; Schoenmaker C; Klein Gunnewiek TM; Passier R; Albers CA; 't Hoen PAC; Nadif Kasri N; van der Meer AD
    Sci Rep; 2021 Jan; 11(1):2281. PubMed ID: 33500551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Anastomosed Microvascular Network Model with Living Capillary Networks and Endothelial Cell-Lined Microfluidic Channels.
    Wang X; Phan DTT; George SC; Hughes CCW; Lee AP
    Methods Mol Biol; 2017; 1612():325-344. PubMed ID: 28634954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering microsystems to recapitulate brain physiology on a chip.
    Ndyabawe K; Kisaalita WS
    Drug Discov Today; 2019 Sep; 24(9):1725-1730. PubMed ID: 31226433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.
    Choi J; Kim S; Jung J; Lim Y; Kang K; Park S; Kang S
    Biomaterials; 2011 Oct; 32(29):7013-22. PubMed ID: 21705075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform enhances neural maturation.
    Shin N; Kim Y; Ko J; Choi SW; Hyung S; Lee SE; Park S; Song J; Jeon NL; Kang KS
    Biotechnol Bioeng; 2022 Feb; 119(2):566-574. PubMed ID: 34716703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
    Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL
    J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.
    Takehara H; Sakaguchi K; Sekine H; Okano T; Shimizu T
    Biomed Microdevices; 2019 Dec; 22(1):9. PubMed ID: 31863202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open microfluidic coculture reveals paracrine signaling from human kidney epithelial cells promotes kidney specificity of endothelial cells.
    Zhang T; Lih D; Nagao RJ; Xue J; Berthier E; Himmelfarb J; Zheng Y; Theberge AB
    Am J Physiol Renal Physiol; 2020 Jul; 319(1):F41-F51. PubMed ID: 32390509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Device Setting by Coculturing Endothelial Cells and Mesenchymal Stem Cells.
    Watanabe M; Sudo R
    Methods Mol Biol; 2021; 2206():57-66. PubMed ID: 32754811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units.
    Uzel SG; Platt RJ; Subramanian V; Pearl TM; Rowlands CJ; Chan V; Boyer LA; So PT; Kamm RD
    Sci Adv; 2016 Aug; 2(8):e1501429. PubMed ID: 27493991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device.
    Nashimoto Y; Hayashi T; Kunita I; Nakamasu A; Torisawa YS; Nakayama M; Takigawa-Imamura H; Kotera H; Nishiyama K; Miura T; Yokokawa R
    Integr Biol (Camb); 2017 Jun; 9(6):506-518. PubMed ID: 28561127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.