These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 29581974)
1. Biomechanical Evaluation of a Novel Apatite-Wollastonite Ceramic Cage Design for Lumbar Interbody Fusion: A Finite Element Model Study. Bozkurt C; Şenköylü A; Aktaş E; Sarıkaya B; Sipahioğlu S; Gürbüz R; Timuçin M Biomed Res Int; 2018; 2018():4152543. PubMed ID: 29581974 [TBL] [Abstract][Full Text] [Related]
2. Design and finite-element evaluation of a versatile assembled lumbar interbody fusion cage. Ding JY; Qian S; Wan L; Huang B; Wang LG; Zhou Y Arch Orthop Trauma Surg; 2010 Apr; 130(4):565-71. PubMed ID: 20140621 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical evaluation of four surgical scenarios of lumbar fusion with hyperlordotic interbody cage: A finite element study. Zhang Z; Fogel GR; Liao Z; Sun Y; Sun X; Liu W Biomed Mater Eng; 2018; 29(4):485-497. PubMed ID: 30282345 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or 2 cages by finite-element analysis. Xu H; Ju W; Xu N; Zhang X; Zhu X; Zhu L; Qian X; Wen F; Wu W; Jiang F Neurosurgery; 2013 Dec; 73(2 Suppl Operative):ons198-205; discussion ons205. PubMed ID: 23632763 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical comparison of anterior lumbar interbody fusion: stand-alone interbody cage versus interbody cage with pedicle screw fixation -- a finite element analysis. Choi KC; Ryu KS; Lee SH; Kim YH; Lee SJ; Park CK BMC Musculoskelet Disord; 2013 Jul; 14():220. PubMed ID: 23890389 [TBL] [Abstract][Full Text] [Related]
6. Relationship between the elastic modulus of the cage material and the biomechanical properties of transforaminal lumbar interbody fusion: A logarithmic regression analysis based on parametric finite element simulations. Lu T; Ren J; Sun Z; Zhang J; Xu K; Sun L; Yang P; Wang D; Lian Y; Zhai J; Gou Y; Ma Y; Ji S; He X; Yang B Comput Methods Programs Biomed; 2022 Feb; 214():106570. PubMed ID: 34896688 [TBL] [Abstract][Full Text] [Related]
7. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Ambati DV; Wright EK; Lehman RA; Kang DG; Wagner SC; Dmitriev AE Spine J; 2015 Aug; 15(8):1812-22. PubMed ID: 24983669 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical Evaluation of Oblique Lumbar Interbody Fusion with Various Fixation Options: A Finite Element Analysis. Song C; Chang H; Zhang D; Zhang Y; Shi M; Meng X Orthop Surg; 2021 Apr; 13(2):517-529. PubMed ID: 33619850 [TBL] [Abstract][Full Text] [Related]
9. Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Tsantrizos A; Baramki HG; Zeidman S; Steffen T Spine (Phila Pa 1976); 2000 Aug; 25(15):1899-907. PubMed ID: 10908932 [TBL] [Abstract][Full Text] [Related]
10. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity. Lee YH; Chung CJ; Wang CW; Peng YT; Chang CH; Chen CH; Chen YN; Li CT Comput Biol Med; 2016 Apr; 71():35-45. PubMed ID: 26874064 [TBL] [Abstract][Full Text] [Related]
12. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
13. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Zhang Z; Li H; Fogel GR; Xiang D; Liao Z; Liu W Comput Biol Med; 2018 Apr; 95():167-174. PubMed ID: 29501735 [TBL] [Abstract][Full Text] [Related]
14. The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: a biomechanical study. Du L; Sun XJ; Zhou TJ; Li YC; Chen C; Zhao CQ; Zhang K; Zhao J BMC Musculoskelet Disord; 2017 Nov; 18(1):474. PubMed ID: 29162074 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques - a three-dimensional finite element analysis. Chen SH; Tai CL; Lin CY; Hsieh PH; Chen WP BMC Musculoskelet Disord; 2008 Jun; 9():88. PubMed ID: 18559117 [TBL] [Abstract][Full Text] [Related]
16. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study. Tang S; Rebholz BJ J Orthop Sci; 2011 Mar; 16(2):221-8. PubMed ID: 21311928 [TBL] [Abstract][Full Text] [Related]
17. Finite element analysis and cadaveric cinematic analysis of fixation options for anteriorly implanted trabecular metal interbody cages. Berjano P; Blanco JF; Rendon D; Villafañe JH; Pescador D; Atienza CM Eur Spine J; 2015 Nov; 24 Suppl 7():918-23. PubMed ID: 26452680 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical comparison of cervical spine interbody fusion cages. Kandziora F; Pflugmacher R; Schäfer J; Born C; Duda G; Haas NP; Mittlmeier T Spine (Phila Pa 1976); 2001 Sep; 26(17):1850-7. PubMed ID: 11568693 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical feasibility of semi-rigid stabilization and semi-rigid lumbar interbody fusion: a finite element study. Wong CE; Hu HT; Kao LH; Liu CJ; Chen KC; Huang KY BMC Musculoskelet Disord; 2022 Jan; 23(1):10. PubMed ID: 34980068 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion. Bhatia NN; Lee KH; Bui CN; Luna M; Wahba GM; Lee TQ Spine (Phila Pa 1976); 2012 Jan; 37(2):E79-85. PubMed ID: 21629171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]