These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 29582330)
41. Multi-criteria decision analysis for the optimal management of nitrate contamination of aquifers. Almasri MN; Kaluarachchi JJ J Environ Manage; 2005 Mar; 74(4):365-81. PubMed ID: 15737460 [TBL] [Abstract][Full Text] [Related]
42. [Simulation on remediation of benzene contaminated groundwater by air sparging]. Fan YL; Jiang L; Zhang D; Zhong MS; Jia XY Huan Jing Ke Xue; 2012 Nov; 33(11):3927-34. PubMed ID: 23323427 [TBL] [Abstract][Full Text] [Related]
43. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater. Han L; Qian L; Yan J; Liu R; Du Y; Chen M Environ Sci Pollut Res Int; 2016 Jan; 23(2):1234-45. PubMed ID: 26354114 [TBL] [Abstract][Full Text] [Related]
44. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study. Wu B; Li H; Du X; Zhong L; Yang B; Du P; Gu Q; Li F Chemosphere; 2016 Feb; 144():2142-9. PubMed ID: 26583297 [TBL] [Abstract][Full Text] [Related]
45. Incorporating linguistic, probabilistic, and possibilistic information in a risk-based approach for ranking contaminated sites. Zhang K; Achari G; Pei Y Integr Environ Assess Manag; 2010 Oct; 6(4):711-24. PubMed ID: 20872650 [TBL] [Abstract][Full Text] [Related]
46. Emerging Technologies for Environmental Remediation: Integrating Data and Judgment. Bates ME; Grieger KD; Trump BD; Keisler JM; Plourde KJ; Linkov I Environ Sci Technol; 2016 Jan; 50(1):349-58. PubMed ID: 26580228 [TBL] [Abstract][Full Text] [Related]
47. Using an innovative criteria weighting tool for stakeholders involvement to rank MSW facility sites with the AHP. De Feo G; De Gisi S Waste Manag; 2010 Nov; 30(11):2370-82. PubMed ID: 20444589 [TBL] [Abstract][Full Text] [Related]
48. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid. Gogoi S; Nath SK; Bordoloi S; Dutta RK J Environ Manage; 2015 Apr; 152():132-9. PubMed ID: 25621387 [TBL] [Abstract][Full Text] [Related]
49. Optimal groundwater security management policies by control of inexact health risks under dual uncertainty in slope factors. Lu H; Li J; Ren L; Chen Y Chemosphere; 2018 May; 198():161-173. PubMed ID: 29421726 [TBL] [Abstract][Full Text] [Related]
50. The development of a novel decision support system for regional land use planning for brownfield land. Hammond EB; Coulon F; Hallett SH; Thomas R; Dick A; Hardy D; Dickens M; Washbourn E; Beriro DJ J Environ Manage; 2024 Jan; 349():119466. PubMed ID: 37952377 [TBL] [Abstract][Full Text] [Related]
51. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. Rahman MA; Rusteberg B; Gogu RC; Lobo Ferreira JP; Sauter M J Environ Manage; 2012 May; 99():61-75. PubMed ID: 22322128 [TBL] [Abstract][Full Text] [Related]
52. Application of ensemble surrogates and adaptive sequential sampling to optimal groundwater remediation design at DNAPLs-contaminated sites. Ouyang Q; Lu W; Miao T; Deng W; Jiang C; Luo J J Contam Hydrol; 2017 Dec; 207():31-38. PubMed ID: 29128132 [TBL] [Abstract][Full Text] [Related]
54. A Novel Preference Elicitation Technique Based on a Graph Model and Its Application to a Brownfield Redevelopment Conflict in China. Zhao S; Xu H Int J Environ Res Public Health; 2019 Oct; 16(21):. PubMed ID: 31652907 [TBL] [Abstract][Full Text] [Related]
55. How to manage future groundwater resource of China under climate change and urbanization: An optimal stage investment design from modern portfolio theory. Hua S; Liang J; Zeng G; Xu M; Zhang C; Yuan Y; Li X; Li P; Liu J; Huang L Water Res; 2015 Nov; 85():31-7. PubMed ID: 26295936 [TBL] [Abstract][Full Text] [Related]
56. A framework for net environmental benefit analysis for remediation or restoration of contaminated sites. Efroymson RA; Nicolette JP; Suter GW Environ Manage; 2004 Sep; 34(3):315-31. PubMed ID: 15520889 [TBL] [Abstract][Full Text] [Related]
57. Groundwater Modeling with Nonlinear Uncertainty Analyses to Enhance Remediation Design Confidence. Brouwers M; Martin PJ; Abbey DG; White J Ground Water; 2018 Jul; 56(4):562-570. PubMed ID: 29633236 [TBL] [Abstract][Full Text] [Related]
58. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation. Sutton PT; Ginn TR J Contam Hydrol; 2014 Dec; 171():32-41. PubMed ID: 25461885 [TBL] [Abstract][Full Text] [Related]
59. Investigation of a Brownfield Conflict Considering the Strength of Preferences. Yu J; Pei LL Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29495314 [TBL] [Abstract][Full Text] [Related]
60. Comparison of permeable reactive barrier, funnel and gate, nonpumped wells, and low-capacity wells for groundwater remediation. Hudak PF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(10):1171-5. PubMed ID: 24844898 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]