These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 29582389)

  • 1. Memory guidance in distractor suppression is governed by the availability of cognitive control.
    Wen W; Hou Y; Li S
    Atten Percept Psychophys; 2018 Jul; 80(5):1157-1168. PubMed ID: 29582389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression on the basis of template for rejection is reactive: Evidence from human electrophysiology.
    Pang C; Chen Y; Zhang Y; Nan W; Fu S
    Atten Percept Psychophys; 2024 May; 86(4):1148-1162. PubMed ID: 38491317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid influences of cued visual memories on attentional guidance.
    van Moorselaar D; Battistoni E; Theeuwes J; Olivers CN
    Ann N Y Acad Sci; 2015 Mar; 1339():1-10. PubMed ID: 25428708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation mechanisms that improve distractor filtering are short-lived.
    Allon AS; Luria R
    Cognition; 2017 Jul; 164():74-86. PubMed ID: 28391134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive-behavioral and electrophysiological evidence of the affective consequences of ignoring stimulus representations in working memory.
    De Vito D; Ferrey AE; Fenske MJ; Al-Aidroos N
    Cogn Affect Behav Neurosci; 2018 Jun; 18(3):460-475. PubMed ID: 29546688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A secondary task is not always costly: Context-based guidance of visual search survives interference from a demanding working memory task.
    Annac E; Zang X; Müller HJ; Geyer T
    Br J Psychol; 2019 May; 110(2):381-399. PubMed ID: 30260470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stressing the mind: the effect of cognitive load and articulatory suppression on attentional guidance from working memory.
    Soto D; Humphreys GW
    Percept Psychophys; 2008 Jul; 70(5):924-34. PubMed ID: 18613638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different prioritization states of working memory representations affect visual searches: Evidence from an event-related potential study.
    Wang M; Liu H; Chen Y; Yang P; Fu S
    Int J Psychophysiol; 2023 Nov; 193():112246. PubMed ID: 37739042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top down modulation of attention to food cues via working memory.
    Higgs S; Rutters F; Thomas JM; Naish K; Humphreys GW
    Appetite; 2012 Aug; 59(1):71-5. PubMed ID: 22450523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Reactivation of working memory representations affects attentional guidance.
    Che X; Lian H; Zhang F; Li S; Zheng Y
    Psychophysiology; 2024 Mar; 61(3):e14514. PubMed ID: 38183326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct causal mechanisms of attentional guidance by working memory and repetition priming in early visual cortex.
    Soto D; Llewelyn D; Silvanto J
    J Neurosci; 2012 Mar; 32(10):3447-52. PubMed ID: 22399767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner.
    Foerster RM; Schneider WX
    Cognition; 2018 Mar; 172():37-45. PubMed ID: 29223864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics.
    Minamoto T; Shipstead Z; Osaka N; Engle RW
    Atten Percept Psychophys; 2015 Jul; 77(5):1659-73. PubMed ID: 25813738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating the focus of attention in working memory: Evidence for a protection of multiple items against perceptual interference.
    Barth A; Schneider D
    Psychophysiology; 2018 Jul; 55(7):e13062. PubMed ID: 29315628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of non-visual working memory load on top-down modulation of visual processing.
    Rissman J; Gazzaley A; D'Esposito M
    Neuropsychologia; 2009 Jun; 47(7):1637-46. PubMed ID: 19397858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic retro-cues do not determine state in visual working memory.
    Dube B; Lumsden A; Al-Aidroos N
    Psychon Bull Rev; 2019 Apr; 26(2):641-646. PubMed ID: 30276638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Working-memory capacity predicts the executive control of visual search among distractors: the influences of sustained and selective attention.
    Poole BJ; Kane MJ
    Q J Exp Psychol (Hove); 2009 Jul; 62(7):1430-54. PubMed ID: 19123118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Evidence for the Contribution of Active Suppression During Working Memory Filtering.
    Feldmann-Wüstefeld T; Vogel EK
    Cereb Cortex; 2019 Feb; 29(2):529-543. PubMed ID: 29365078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The state of memory-matched distractor in working memory influence the visual attention.
    Long Q; Luo T; Zhang S; Jiang Y; Hu N; Gu Y; Xu P; Chen A
    PLoS One; 2020; 15(12):e0242721. PubMed ID: 33259519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Control of Single-color and Multiple-color Visual Search by Attentional Templates in Working Memory and in Long-term Memory.
    Grubert A; Carlisle NB; Eimer M
    J Cogn Neurosci; 2016 Dec; 28(12):1947-1963. PubMed ID: 27458746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.