These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 29582528)
1. Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides. Brock DJ; Kustigian L; Jiang M; Graham K; Wang TY; Erazo-Oliveras A; Najjar K; Zhang J; Rye H; Pellois JP Traffic; 2018 Jun; 19(6):421-435. PubMed ID: 29582528 [TBL] [Abstract][Full Text] [Related]
2. The Late Endosome and Its Lipid BMP Act as Gateways for Efficient Cytosolic Access of the Delivery Agent dfTAT and Its Macromolecular Cargos. Erazo-Oliveras A; Najjar K; Truong D; Wang TY; Brock DJ; Prater AR; Pellois JP Cell Chem Biol; 2016 May; 23(5):598-607. PubMed ID: 27161484 [TBL] [Abstract][Full Text] [Related]
3. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Yang ST; Zaitseva E; Chernomordik LV; Melikov K Biophys J; 2010 Oct; 99(8):2525-33. PubMed ID: 20959093 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a Multivalent TAT Peptide and Bis(monoacylglycero)phosphate. Brock DJ; Kondow-McConaghy H; Allen J; Brkljača Z; Kustigian L; Jiang M; Zhang J; Rye H; Vazdar M; Pellois JP Cell Chem Biol; 2020 Oct; 27(10):1296-1307.e5. PubMed ID: 32783962 [TBL] [Abstract][Full Text] [Related]
6. Efficient Delivery of Macromolecules into Human Cells by Improving the Endosomal Escape Activity of Cell-Penetrating Peptides: Lessons Learned from dfTAT and its Analogs. Allen JK; Brock DJ; Kondow-McConaghy HM; Pellois JP Biomolecules; 2018 Jul; 8(3):. PubMed ID: 29997347 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular delivery of TAT-fused proteins. Suzuki M; Iwaki K; Kikuchi M; Fujiwara K; Doi N Biochem Biophys Res Commun; 2022 Jan; 586():63-67. PubMed ID: 34826702 [TBL] [Abstract][Full Text] [Related]
9. Discovery and Mechanism of Highly Efficient Cyclic Cell-Penetrating Peptides. Qian Z; Martyna A; Hard RL; Wang J; Appiah-Kubi G; Coss C; Phelps MA; Rossman JS; Pei D Biochemistry; 2016 May; 55(18):2601-12. PubMed ID: 27089101 [TBL] [Abstract][Full Text] [Related]
10. Cytosolic targeting of macromolecules using a pH-dependent fusogenic peptide in combination with cationic liposomes. Kobayashi S; Nakase I; Kawabata N; Yu HH; Pujals S; Imanishi M; Giralt E; Futaki S Bioconjug Chem; 2009 May; 20(5):953-9. PubMed ID: 19388672 [TBL] [Abstract][Full Text] [Related]
11. Cytosolic Delivery of Macromolecules in Live Human Cells Using the Combined Endosomal Escape Activities of a Small Molecule and Cell Penetrating Peptides. Allen J; Najjar K; Erazo-Oliveras A; Kondow-McConaghy HM; Brock DJ; Graham K; Hager EC; Marschall ALJ; Dübel S; Juliano RL; Pellois JP ACS Chem Biol; 2019 Dec; 14(12):2641-2651. PubMed ID: 31633910 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. Mastrobattista E; Koning GA; van Bloois L; Filipe AC; Jiskoot W; Storm G J Biol Chem; 2002 Jul; 277(30):27135-43. PubMed ID: 12021269 [TBL] [Abstract][Full Text] [Related]
13. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. El-Sayed A; Futaki S; Harashima H AAPS J; 2009 Mar; 11(1):13-22. PubMed ID: 19125334 [TBL] [Abstract][Full Text] [Related]
15. Engineering of a tumor cell-specific, cytosol-penetrating antibody with high endosomal escape efficacy. Kim JS; Park JY; Shin SM; Park SW; Jun SY; Hong JS; Choi DK; Kim YS Biochem Biophys Res Commun; 2018 Sep; 503(4):2510-2516. PubMed ID: 30208519 [TBL] [Abstract][Full Text] [Related]
16. Cell-penetrating mechanism of intracellular targeting albumin: Contribution of macropinocytosis induction and endosomal escape. Ichimizu S; Watanabe H; Maeda H; Hamasaki K; Ikegami K; Chuang VTG; Kinoshita R; Nishida K; Shimizu T; Ishima Y; Ishida T; Seki T; Katsuki H; Futaki S; Otagiri M; Maruyama T J Control Release; 2019 Jun; 304():156-163. PubMed ID: 31082432 [TBL] [Abstract][Full Text] [Related]
17. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System. Jing X; Foged C; Martin-Bertelsen B; Yaghmur A; Knapp KM; Malmsten M; Franzyk H; Nielsen HM Mol Pharm; 2016 Jun; 13(6):1739-49. PubMed ID: 26654841 [TBL] [Abstract][Full Text] [Related]
18. Endosomal escape pathways for delivery of biologicals. Varkouhi AK; Scholte M; Storm G; Haisma HJ J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351 [TBL] [Abstract][Full Text] [Related]
19. Modular Redesign of a Cationic Lytic Peptide To Promote the Endosomal Escape of Biomacromolecules. Azuma Y; Imai H; Kawaguchi Y; Nakase I; Kimura H; Futaki S Angew Chem Int Ed Engl; 2018 Sep; 57(39):12771-12774. PubMed ID: 30101453 [TBL] [Abstract][Full Text] [Related]
20. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Qian Z; LaRochelle JR; Jiang B; Lian W; Hard RL; Selner NG; Luechapanichkul R; Barrios AM; Pei D Biochemistry; 2014 Jun; 53(24):4034-46. PubMed ID: 24896852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]