These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29582569)

  • 1. The potential of plant microbiota in reducing postharvest food loss.
    Buchholz F; Kostić T; Sessitsch A; Mitter B
    Microb Biotechnol; 2018 Nov; 11(6):971-975. PubMed ID: 29582569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the microbiological status of pre- and postharvest produce from small organic production.
    Xu A; Pahl DM; Buchanan RL; Micallef SA
    J Food Prot; 2015 Jun; 78(6):1072-80. PubMed ID: 26038895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research Advances of Beneficial Microbiota Associated with Crop Plants.
    Tian L; Lin X; Tian J; Ji L; Chen Y; Tran LP; Tian C
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil Biodiversity Effects from Field to Fork.
    Rillig MC; Lehmann A; Lehmann J; Camenzind T; Rauh C
    Trends Plant Sci; 2018 Jan; 23(1):17-24. PubMed ID: 29146430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tiny Microbes, Big Yields: enhancing food crop production with biological solutions.
    Trivedi P; Schenk PM; Wallenstein MD; Singh BK
    Microb Biotechnol; 2017 Sep; 10(5):999-1003. PubMed ID: 28840959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions.
    Sun W; Xiao E; Krumins V; Häggblom MM; Dong Y; Pu Z; Li B; Wang Q; Xiao T; Li F
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the plant microbiome to promote the growth of agricultural crops.
    Zhang J; Cook J; Nearing JT; Zhang J; Raudonis R; Glick BR; Langille MGI; Cheng Z
    Microbiol Res; 2021 Apr; 245():126690. PubMed ID: 33460987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing rhizosphere microbiomes for drought-resilient crop production.
    de Vries FT; Griffiths RI; Knight CG; Nicolitch O; Williams A
    Science; 2020 Apr; 368(6488):270-274. PubMed ID: 32299947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 21st century agriculture: integration of plant microbiomes for improved crop production and food security.
    Sessitsch A; Mitter B
    Microb Biotechnol; 2015 Jan; 8(1):32-3. PubMed ID: 25545820
    [No Abstract]   [Full Text] [Related]  

  • 10. Using disease-burden method to evaluate the strategies for reduction of aflatoxin exposure in peanuts.
    Wang X; You SH; Lien KW; Ling MP
    Toxicol Lett; 2019 Oct; 314():75-81. PubMed ID: 31284020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Communities Changes during Food Waste Spoilage.
    Wu S; Xu S; Chen X; Sun H; Hu M; Bai Z; Zhuang G; Zhuang X
    Sci Rep; 2018 May; 8(1):8220. PubMed ID: 29844418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewilding plant microbiomes.
    Raaijmakers JM; Kiers ET
    Science; 2022 Nov; 378(6620):599-600. PubMed ID: 36356130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating nanotechnology with plant microbiome for next-generation crop health.
    Hussain M; Zahra N; Lang T; Zain M; Raza M; Shakoor N; Adeel M; Zhou H
    Plant Physiol Biochem; 2023 Mar; 196():703-711. PubMed ID: 36809731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors controlling the fate of pyrethroids residues during post-harvest processing of raw agricultural crops: An overview.
    Albaseer SS
    Food Chem; 2019 Oct; 295():58-63. PubMed ID: 31174799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience.
    Arif I; Batool M; Schenk PM
    Trends Biotechnol; 2020 Dec; 38(12):1385-1396. PubMed ID: 32451122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions.
    Chouhan GK; Verma JP; Jaiswal DK; Mukherjee A; Singh S; de Araujo Pereira AP; Liu H; Abd Allah EF; Singh BK
    Microbiol Res; 2021 Jul; 248():126763. PubMed ID: 33892241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant microbiota modified by plant domestication.
    Martínez-Romero E; Aguirre-Noyola JL; Taco-Taype N; Martínez-Romero J; Zuñiga-Dávila D
    Syst Appl Microbiol; 2020 Sep; 43(5):126106. PubMed ID: 32847781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytobiome metabolism: beneficial soil microbes steer crop plants' secondary metabolism.
    Korenblum E; Aharoni A
    Pest Manag Sci; 2019 Sep; 75(9):2378-2384. PubMed ID: 30973666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next generation microbiome applications for crop production - limitations and the need of knowledge-based solutions.
    Mitter B; Brader G; Pfaffenbichler N; Sessitsch A
    Curr Opin Microbiol; 2019 Jun; 49():59-65. PubMed ID: 31731227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.