These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29582693)

  • 1. A theoretical analysis and finite element simulation of fixator-bone system stiffness on healing progression.
    Li J; Zhao X; Hu X; Tao C; Ji R
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):115-125. PubMed ID: 29582693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element analysis for monitoring the healing progression of fixator-bone system under three loading conditions.
    Li J; Zhao X; Hu X; Tao C; Ji R
    Biomed Mater Eng; 2018; 29(4):473-483. PubMed ID: 30282344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of load transfer process between external fixator and bone model by experimental and finite element methods.
    Zhao X; Li J; Chen Y; Tao C; Ji R
    J Appl Biomater Funct Mater; 2019; 17(1):2280800019826512. PubMed ID: 30803304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load transmission through the callus site with external fixation systems: theoretical and experimental analysis.
    Prat J; Juan JA; Vera P; Hoyos JV; Dejoz R; Peris JL; Sánchez-Lacuesta J; Comín M
    J Biomech; 1994 Apr; 27(4):469-78. PubMed ID: 8188727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivities of biomechanical assessment methods for fracture healing of long bones.
    Chen G; Wu FY; Zhang JQ; Zhong GQ; Liu F
    Med Eng Phys; 2015 Jul; 37(7):650-6. PubMed ID: 25983068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixation stiffness of Dynafix unilateral external fixator in neutral and non-neutral configurations.
    Koo TK; Chao EY; Mak AF
    Biomed Mater Eng; 2005; 15(6):433-44. PubMed ID: 16308459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the vibrational behaviour of a healing tibia using finite element modelling.
    Lowet G; Dayuan X; Van der Perre G
    J Biomech; 1996 Aug; 29(8):1003-10. PubMed ID: 8817366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-Element Syntheses of Callus and Bone Remodeling: Biomechanical Study of Fracture Healing in Long Bones.
    Lipphaus A; Witzel U
    Anat Rec (Hoboken); 2018 Dec; 301(12):2112-2121. PubMed ID: 30290071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing Adjustable Stiffness External Fixator for Mechanically Stimulated Healing of Tibial Fractures.
    Li H; Li D; Qiao F; Tang L; Han Q
    Biomed Res Int; 2021; 2021():8539416. PubMed ID: 34977247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External fixator configurations in tibia fractures: 1D optimization and 3D analysis comparison.
    Roseiro LM; Neto MA; Amaro A; Leal RP; Samarra MC
    Comput Methods Programs Biomed; 2014; 113(1):360-70. PubMed ID: 24176414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of compression on the healing of experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical consequences of callus development in Hoffmann, Wagner, Orthofix and Ilizarov external fixators.
    Juan JA; Prat J; Vera P; Hoyos JV; Sánchez-Lacuesta J; Peris JL; Dejoz R; Alepuz R
    J Biomech; 1992 Sep; 25(9):995-1006. PubMed ID: 1517275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a finite element model of a unilateral external fixator in a rabbit tibia defect model.
    Karunratanakul K; Kerckhofs G; Lammens J; Vanlauwe J; Schrooten J; Van Oosterwyck H
    Med Eng Phys; 2013 Jul; 35(7):1037-43. PubMed ID: 23107490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness measurement of the neocallus with the Fraktometer FM 100.
    Schmickal T; von Recum J; Wentzensen A
    Arch Orthop Trauma Surg; 2005 Dec; 125(10):653-9. PubMed ID: 16189688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metaphyseal locking plate as a definitive external fixator for treating open tibial fractures--clinical outcome and a finite element study.
    Ma CH; Wu CH; Tu YK; Lin TS
    Injury; 2013 Aug; 44(8):1097-101. PubMed ID: 23706173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modelling of a unilateral fixator for bone reconstruction: Importance of contact settings.
    Karunratanakul K; Schrooten J; Van Oosterwyck H
    Med Eng Phys; 2010 Jun; 32(5):461-7. PubMed ID: 20434935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico re-foundation of strain-based healing assessment of fractures treated with an external fixator.
    Di Puccio F; Curreli C; Gagliani M; Mattei L
    J Mech Behav Biomed Mater; 2021 Sep; 121():104619. PubMed ID: 34198040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Relation between the Dynamization of Hexapod Circular External Fixator and Tibial Mechanical Properties.
    Mao Y; Lin Q; Yang Q
    Orthop Surg; 2023 Jun; 15(6):1677-1684. PubMed ID: 37154090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.