These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29583262)

  • 21. Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla.
    Pantelias AA; Monsivais P; Rubel EW
    Hear Res; 2001 Jun; 156(1-2):81-94. PubMed ID: 11377884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified cell proliferation due to electrical currents.
    Vodovnik L; Miklavcic D; Sersa G
    Med Biol Eng Comput; 1992 Jul; 30(4):CE21-8. PubMed ID: 1487931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular Electrical Currents in the Chick Blastoderm.
    Kučera P; DE Ribaupierre Y
    Biol Bull; 1989 Apr; 176(2S):118-122. PubMed ID: 29300577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of electrical stunning current and frequency on meat quality, plasma parameters, and glycolytic potential in broilers.
    Xu L; Zhang L; Yue HY; Wu SG; Zhang HJ; Ji F; Qi GH
    Poult Sci; 2011 Aug; 90(8):1823-30. PubMed ID: 21753221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peripheral Nerve Conduction Block by High-Frequency Alternating Currents: A Systematic Review.
    Avendano-Coy J; Serrano-Munoz D; Taylor J; Goicoechea-Garcia C; Gomez-Soriano J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1131-1140. PubMed ID: 29877837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurotensin modulates the amplitude and frequency of voltage-activated Ca2+ currents in frog pituitary melanotrophs: implication of the inositol triphosphate/protein kinase C pathway.
    Belmeguenai A; Leprince J; Tonon MC; Vaudry H; Louiset E
    Eur J Neurosci; 2002 Nov; 16(10):1907-16. PubMed ID: 12453054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model.
    Tai C; de Groat WC; Roppolo JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):415-22. PubMed ID: 16200764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Participation of fast-activating, voltage-dependent K currents in electrical slow waves of colonic circular muscle.
    Thornbury KD; Ward SM; Sanders KM
    Am J Physiol; 1992 Jul; 263(1 Pt 1):C226-36. PubMed ID: 1636679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibrational resonance in a randomly connected neural network.
    Qin Y; Han C; Che Y; Zhao J
    Cogn Neurodyn; 2018 Oct; 12(5):509-518. PubMed ID: 30250629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study.
    Zhang T; Li R; Potter T; Seo JK; Li G; Zhang Y
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2980. PubMed ID: 29521020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and testing of a system for measuring high-frequency AC losses in superconducting wires and coils carrying DC and AC currents.
    Nikulshin Y; Ginodman V; Friedman A; Yeshurun Y; Wolfus S
    Rev Sci Instrum; 2019 Jun; 90(6):065111. PubMed ID: 31255017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending.
    Goldberg JM
    J Neurophysiol; 1996 Sep; 76(3):1942-57. PubMed ID: 8890305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inwardly rectifying Kir2.1 currents in human β-cells control electrical activity: characterisation and mathematical modelling.
    Riz M; Braun M; Wu X; Pedersen MG
    Biochem Biophys Res Commun; 2015 Apr; 459(2):284-287. PubMed ID: 25727015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nerve terminal currents induced by autoreception of acetylcholine release.
    Fu WM; Liou HC; Chen YH
    J Neurosci; 1998 Dec; 18(23):9954-61. PubMed ID: 9822751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical activity and calcium influx regulate ion channel development in embryonic Xenopus skeletal muscle.
    Linsdell P; Moody WJ
    J Neurosci; 1995 Jun; 15(6):4507-14. PubMed ID: 7790920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental expression of Na+ currents in mouse Purkinje neurons.
    Fry M
    Eur J Neurosci; 2006 Nov; 24(9):2557-66. PubMed ID: 17100843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method.
    Acikel V; Atalar E
    Med Phys; 2011 Dec; 38(12):6623-32. PubMed ID: 22149844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A New Electrical Instrument: The German Invention for Utilising High-frequency Currents.
    Hospital (Lond 1886); 1912 Feb; 51(1335):481. PubMed ID: 29822844
    [No Abstract]   [Full Text] [Related]  

  • 39. Production of convulsions in rats by high frequency electrical currents.
    AUSTIN GN; HORVATH SM
    Am J Phys Med; 1954 Jun; 33(3):141-9. PubMed ID: 13158536
    [No Abstract]   [Full Text] [Related]  

  • 40. Simultaneous imaging of dual-frequency electrical conductivity using a combination of MREIT and MREPT.
    Kim HJ; Jeong WC; Sajib SZ; Kim MO; Kwon OI; Je Woo E; Kim DH
    Magn Reson Med; 2014 Jan; 71(1):200-8. PubMed ID: 23400804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.