These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29584571)

  • 41. Background to the ADI/TDI/PTWI.
    Herrman JL; Younes M
    Regul Toxicol Pharmacol; 1999 Oct; 30(2 Pt 2):S109-13. PubMed ID: 10597623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Residue retention of ethephon on stone fruits and berries. 2. Ethephon residues in currants and gooseberries].
    Beitz H; Bergner U
    Nahrung; 1976; 20(10):905-10. PubMed ID: 1018717
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nature of the field-to-field distribution of pesticide residues.
    Ámbrus A; Horváth Z; Farkas Z; Szabó IJ; Dorogházi E; Szeitzné-Szabó M
    J Environ Sci Health B; 2014; 49(4):229-44. PubMed ID: 24502210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Risk assessment of pesticide usage by farmers in Commewijne, Suriname, South America: a pilot study for the Alkmaar and Tamanredjo regions.
    Mahabali S; Spanoghe P
    Environ Monit Assess; 2015 Mar; 187(3):153. PubMed ID: 25726027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Organophosphorus pesticide residues in milled rice (Oryza sativa) on the Chinese market and dietary risk assessment.
    Chen C; Li Y; Chen M; Chen Z; Qian Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Mar; 26(3):340-7. PubMed ID: 19680907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimation of sampling uncertainty for determination of pesticide residues in plant commodities.
    Ambrus A
    J Environ Sci Health B; 2009 Sep; 44(7):627-39. PubMed ID: 20183072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Risk assessment of chlorpyrifos on rice and cabbage in China.
    Chen C; Qian Y; Liu X; Tao C; Liang Y; Li Y
    Regul Toxicol Pharmacol; 2012 Feb; 62(1):125-30. PubMed ID: 22210174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MRL calculations based on both intra- and inter-trial residue variability.
    Hamilton DJ
    Regul Toxicol Pharmacol; 2015 Jun; 72(1):1-7. PubMed ID: 25784487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Study on of dietary pesticide residues in Chinese residents].
    Zhao YF; Wu YN; Wang XQ; Gao JQ; Chen JS
    Zhonghua Liu Xing Bing Xue Za Zhi; 2003 Aug; 24(8):661-4. PubMed ID: 14521784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Consumer risk assessment in case of maximum residue levels (MRLs) violations in food].
    Struciński P; Góralczyk K; Czaja K; Hernik A; Korcz W; Ludwicki JK
    Rocz Panstw Zakl Hig; 2007; 58(2):377-88. PubMed ID: 17929585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distribution of multiple pesticide residues in apple segments after home processing.
    Rasmusssen RR; Poulsen ME; Hansen HC
    Food Addit Contam; 2003 Nov; 20(11):1044-63. PubMed ID: 14668155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chronic dietary risk for pesticide residues in food in Brazil: an update.
    Caldas ED; Souza LC
    Food Addit Contam; 2004 Nov; 21(11):1057-64. PubMed ID: 15764334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Risk assessment and monitoring of dinotefuran and its metabolites for Chinese consumption of apples.
    Yu W; Huang M; Chen J; Wu S; Zheng K; Zeng S; Zhang K; Hu D
    Environ Monit Assess; 2017 Sep; 189(10):521. PubMed ID: 28948413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana.
    Darko G; Akoto O
    Food Chem Toxicol; 2008 Dec; 46(12):3703-6. PubMed ID: 18929615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comprehensive estimate of the theoretical maximum daily intake of pesticide residues for chronic dietary risk assessment in Argentina.
    Maggioni DA; Signorini ML; Michlig N; Repetti MR; Sigrist ME; Beldomenico HR
    J Environ Sci Health B; 2017 Apr; 52(4):256-266. PubMed ID: 28085552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determination of pesticide residues in integrated pest management and nonintegrated pest management samples of apple (Malus pumila Mill.).
    Singh SB; Mukherjee I; Maisnam J; Kumar P; Gopal M; Kulshrestha G
    J Agric Food Chem; 2009 Dec; 57(23):11277-83. PubMed ID: 19904932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Harmonized methodology to assess chronic dietary exposure to residues from compounds used as pesticide and veterinary drug.
    Arcella D; Boobis A; Cressey P; Erdely H; Fattori V; Leblanc JC; Lipp M; Reuss R; Scheid S; Tritscher A; Van der Velde-Koerts T; Verger P
    Crit Rev Toxicol; 2019 Jan; 49(1):1-10. PubMed ID: 30919727
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multivariate study of parameters in the determination of pesticide residues in apple by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry using experimental factorial design.
    Abdulra'uf LB; Tan GH
    Food Chem; 2013 Dec; 141(4):4344-8. PubMed ID: 23993624
    [TBL] [Abstract][Full Text] [Related]  

  • 59. N-methyl carbamate concentrations and dietary intake estimates for apple and grape juices available on the retail market in Canada.
    Rawn DF; Roscoe V; Krakalovich T; Hanson C
    Food Addit Contam; 2004 Jun; 21(6):555-63. PubMed ID: 15204533
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantifying dietary exposure to pesticide residues using spraying journal data.
    Larsson MO; Nielsen VS; Brandt CØ; Bjerre N; Laporte F; Cedergreen N
    Food Chem Toxicol; 2017 Jul; 105():407-428. PubMed ID: 28499824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.