These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29584634)

  • 1. Printing and Folding: A Solution for High-Throughput Processing of Organic Thin-Film Thermoelectric Devices.
    Mortazavinatanzi S; Rezaniakolaei A; Rosendahl L
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29584634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications.
    Ou C; Sangle AL; Datta A; Jing Q; Busolo T; Chalklen T; Narayan V; Kar-Narayan S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19580-19587. PubMed ID: 29775276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-Directed Crystallization for Printed Electronics.
    Qu G; Kwok JJ; Diao Y
    Acc Chem Res; 2016 Dec; 49(12):2756-2764. PubMed ID: 27993010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts.
    Chen B; Kruse M; Xu B; Tutika R; Zheng W; Bartlett MD; Wu Y; Claussen JC
    Nanoscale; 2019 Mar; 11(12):5222-5230. PubMed ID: 30644953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates.
    Hollar C; Lin Z; Kongara M; Varghese T; Karthik C; Schimpf J; Eixenberger J; Davis PH; Wu Y; Duan X; Zhang Y; Estrada D
    Adv Mater Technol; 2020 Nov; 5(11):. PubMed ID: 33738334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology.
    Zhao X; Han W; Zhao C; Wang S; Kong F; Ji X; Li Z; Shen X
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10301-10309. PubMed ID: 30773879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities.
    Ren W; Sun Y; Zhao D; Aili A; Zhang S; Shi C; Zhang J; Geng H; Zhang J; Zhang L; Xiao J; Yang R
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33568483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed Bi
    Cui GP; Feng CP; Xu SC; Sun KY; Ji JC; Hou L; Lan HB; Shang HJ; Ding FZ
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35353-35360. PubMed ID: 38940538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Thermoelectric Fabric Structure with Switched Thermal Gradient Direction toward Wearable In-Plane Thermoelectric Generators.
    Ding D; Wu Q; Li Q; Chen Y; Zhi C; Wei X; Wang J
    Small; 2024 May; 20(22):e2306830. PubMed ID: 38126556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printed Flexible Thermoelectric Nanocomposites Based on Carbon Nanotubes and Polyaniline.
    Słoma M; Głód MA; Wałpuski B
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Thermoelectric Materials as the Waste Heat Remedy.
    Gogoc S; Data P
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Performance, and Application of Thermoelectric Nanogenerators.
    Zhang D; Wang Y; Yang Y
    Small; 2019 Aug; 15(32):e1805241. PubMed ID: 30773843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Thermoelectric Materials and Generators: Challenges and Innovations.
    Wang Y; Yang L; Shi XL; Shi X; Chen L; Dargusch MS; Zou J; Chen ZG
    Adv Mater; 2019 Jul; 31(29):e1807916. PubMed ID: 31148307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Materials for Wearable Thermoelectric Generators and Biosensing Devices.
    Sattar M; Yeo WH
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printed Flexible μ-Thermoelectric Device Based on Hybrid Bi
    Pires AL; Cruz IF; Silva J; Oliveira GNP; Ferreira-Teixeira S; Lopes AML; Araújo JP; Fonseca J; Pereira C; Pereira AM
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8969-8981. PubMed ID: 30693751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Printing thermoelectric inks toward next-generation energy and thermal devices.
    Zeng M; Zavanelli D; Chen J; Saeidi-Javash M; Du Y; LeBlanc S; Snyder GJ; Zhang Y
    Chem Soc Rev; 2022 Jan; 51(2):485-512. PubMed ID: 34761784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma-jet printing of colloidal thermoelectric Bi
    Manzi J; Weltner AE; Varghese T; McKibben N; Busuladzic-Begic M; Estrada D; Subbaraman H
    Nanoscale; 2023 Apr; 15(14):6596-6606. PubMed ID: 36916135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.
    Varghese T; Hollar C; Richardson J; Kempf N; Han C; Gamarachchi P; Estrada D; Mehta RJ; Zhang Y
    Sci Rep; 2016 Sep; 6():33135. PubMed ID: 27615036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of MEMS Process Compatible (Bi,Sb)
    Bhatnagar P; Vashaee D
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Figure-of-Merit Telluride-Based Flexible Thermoelectric Films through Interfacial Modification via Millisecond Photonic-Curing for Fully Printed Thermoelectric Generators.
    Mallick MM; Franke L; Rösch AG; Geßwein H; Long Z; Eggeler YM; Lemmer U
    Adv Sci (Weinh); 2022 Nov; 9(31):e2202411. PubMed ID: 36106362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.