These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29584646)

  • 1. Oleylamine-Mediated Hydrothermal Growth of Millimeter-Long Cu Nanowires and Their Electrocatalytic Activity for Reduction of Nitrate.
    Zheng Y; Chen N; Wang C; Zhang X; Liu Z
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29584646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Highly Flexible Copper Nanowires in Dual Surfactant Hydrothermal Process.
    Balela MDL; Orgen SB; Tan MR
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7156-7162. PubMed ID: 31039870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement.
    Huang X; Zhu Y; Yang W; Jiang A; Jin X; Zhang Y; Yan L; Zhang G; Liu Z
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31466335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-two nanometer single crystal Au nanowires.
    Huo Z; Tsung CK; Huang W; Zhang X; Yang P
    Nano Lett; 2008 Jul; 8(7):2041-4. PubMed ID: 18537294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode.
    Zhuang Z; Su X; Yuan H; Sun Q; Xiao D; Choi MM
    Analyst; 2008 Jan; 133(1):126-32. PubMed ID: 18087623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays.
    Ma M; Djanashvili K; Smith WA
    Angew Chem Int Ed Engl; 2016 Jun; 55(23):6680-4. PubMed ID: 27098996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green, Seed-Mediated Synthesis of Au Nanowires and Their Efficient Electrocatalytic Activity in Oxygen Reduction Reaction.
    Balasubramanian S; Sheelam A; Ramanujam K; Dhamodharan R
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28876-28886. PubMed ID: 28795794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution synthesis of germanium nanowires using a Ge2+ alkoxide precursor.
    Gerung H; Boyle TJ; Tribby LJ; Bunge SD; Brinker CJ; Han SM
    J Am Chem Soc; 2006 Apr; 128(15):5244-50. PubMed ID: 16608360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and electrochemical properties of copper wires with seamless 1D nanostructures.
    Wu Y; Gao M; Li S; Ren Y; Qin G
    Data Brief; 2018 Apr; 17():747-752. PubMed ID: 29876433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires.
    Li ZQ; Shi JH; Liu QQ; Chen YW; Sun Z; Yang Z; Huang SM
    Nanotechnology; 2011 Jul; 22(26):265615. PubMed ID: 21586809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate.
    Wang J; Wang S; Zhang Z; Wang C
    J Environ Manage; 2020 Dec; 276():111357. PubMed ID: 32932072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution.
    Liao HG; Zheng H
    J Am Chem Soc; 2013 Apr; 135(13):5038-43. PubMed ID: 23477794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transport modelling for the electroreduction of CO
    Raciti D; Mao M; Wang C
    Nanotechnology; 2018 Jan; 29(4):044001. PubMed ID: 29265010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles.
    Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z
    ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction.
    Lu X; Yavuz MS; Tuan HY; Korgel BA; Xia Y
    J Am Chem Soc; 2008 Jul; 130(28):8900-1. PubMed ID: 18540574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications.
    Yang HJ; He SY; Tuan HY
    Langmuir; 2014 Jan; 30(2):602-10. PubMed ID: 24367924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper(II) 1,4-naphthalenedicarboxylate on copper foam nanowire arrays for electrochemical immunosensing of the prostate specific antigen.
    Chen ZA; Lu W; Bao C; Niu Q; Cao X; Wang H; Yao RX
    Mikrochim Acta; 2019 Nov; 186(12):758. PubMed ID: 31707617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance.
    Li Y; Yang XY; Rooke J; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(2):303-12. PubMed ID: 20546764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires.
    Ma M; Djanashvili K; Smith WA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.