These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29584701)

  • 1. Optimizing Propagation of Staphylococcus aureus Infecting Bacteriophage vB_SauM-phiIPLA-RODI on Staphylococcus xylosus Using Response Surface Methodology.
    González-Menéndez E; Arroyo-López FN; Martínez B; García P; Garrido-Fernández A; Rodríguez A
    Viruses; 2018 Mar; 10(4):. PubMed ID: 29584701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms.
    Gutiérrez D; Vandenheuvel D; Martínez B; Rodríguez A; Lavigne R; García P
    Appl Environ Microbiol; 2015 May; 81(10):3336-48. PubMed ID: 25746992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Behavior of Staphylococcus aureus Dual-Species Biofilms Treated with Bacteriophage phiIPLA-RODI Depends on the Accompanying Microorganism.
    González S; Fernández L; Campelo AB; Gutiérrez D; Martínez B; Rodríguez A; García P
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental pH is a key modulator of Staphylococcus aureus biofilm development under predation by the virulent phage phiIPLA-RODI.
    Fernández L; Gutiérrez D; García P; Rodríguez A
    ISME J; 2021 Jan; 15(1):245-259. PubMed ID: 32963343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to Encapsulate the
    González-Menéndez E; Fernández L; Gutiérrez D; Pando D; Martínez B; Rodríguez A; García P
    Viruses; 2018 Sep; 10(9):. PubMed ID: 30217072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the Interactions Between Bacteriophage phiIPLA-RODI and Four Chemical Disinfectants for the Elimination of Staphylococcus aureus Contamination.
    Agún S; Fernández L; González-Menéndez E; Martínez B; Rodríguez A; García P
    Viruses; 2018 Feb; 10(3):. PubMed ID: 29495568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic action of phage phiIPLA-RODI and lytic protein CHAPSH3b: a combination strategy to target Staphylococcus aureus biofilms.
    Duarte AC; Fernández L; De Maesschalck V; Gutiérrez D; Campelo AB; Briers Y; Lavigne R; Rodríguez A; García P
    NPJ Biofilms Microbiomes; 2021 Apr; 7(1):39. PubMed ID: 33888725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain.
    El Haddad L; Ben Abdallah N; Plante PL; Dumaresq J; Katsarava R; Labrie S; Corbeil J; St-Gelais D; Moineau S
    PLoS One; 2014; 9(7):e102600. PubMed ID: 25061757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Different Parameters Affecting Diffusion, Propagation and Survival of Staphylophages in Bacterial Biofilms.
    González S; Fernández L; Gutiérrez D; Campelo AB; Rodríguez A; García P
    Front Microbiol; 2018; 9():2348. PubMed ID: 30323804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and partial genomic analysis of a lytic Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis in Mid-east of China.
    Zhang L; Bao H; Wei C; Zhang H; Zhou Y; Wang R
    Virus Genes; 2015 Feb; 50(1):111-7. PubMed ID: 25328045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biological characteristics and genomic information of a bacteriophage against pan-drug resistant
    Qi ZY; Yang SY; Dong SW; Zhao FF; Qin JH; Xiang J
    Zhonghua Shao Shang Za Zhi; 2020 Jan; 36(1):14-23. PubMed ID: 32023713
    [No Abstract]   [Full Text] [Related]  

  • 12. Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology.
    Kim SG; Kwon J; Giri SS; Yun S; Kim HJ; Kim SW; Kang JW; Lee SB; Jung WJ; Park SC
    Microb Cell Fact; 2021 Mar; 20(1):56. PubMed ID: 33653327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant
    Kaźmierczak N; Grygorcewicz B; Roszak M; Bochentyn B; Piechowicz L
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of Bacteriophages on the Metabolic Condition of Human Fibroblasts in Light of the Safety of Phage Therapy in Staphylococcal Skin Infections.
    Kosznik-Kwaśnicka K; Stasiłojć M; Stasiłojć G; Kaźmierczak N; Piechowicz L
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus.
    Fernández L; González S; Campelo AB; Martínez B; Rodríguez A; García P
    Sci Rep; 2017 Jan; 7():40965. PubMed ID: 28102347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the calcium concentration on the efficacy of phage phiIPLA-RODI, LysRODIΔAmi and nisin for the elimination of Staphylococcus aureus during lab-scale cheese production.
    Youssef O; Agún S; Fernández L; Khalil SA; Rodríguez A; García P
    Int J Food Microbiol; 2023 Aug; 399():110227. PubMed ID: 37148666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage JS02, a putative temperate phage, a novel biofilm-degrading agent for Staphylococcus aureus.
    Zhang L; Shahin K; Soleimani-Delfan A; Ding H; Wang H; Sun L; Wang R
    Lett Appl Microbiol; 2022 Sep; 75(3):643-654. PubMed ID: 35100443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products.
    González-Menéndez E; Fernández L; Gutiérrez D; Rodríguez A; Martínez B; García P
    PLoS One; 2018; 13(10):e0205728. PubMed ID: 30308048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus.
    Tkhilaishvili T; Lombardi L; Klatt AB; Trampuz A; Di Luca M
    Int J Antimicrob Agents; 2018 Dec; 52(6):842-853. PubMed ID: 30236955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of bacteriophages as disinfectants to control of Staphylococcus aureus biofilms.
    Song J; Ruan H; Chen L; Jin Y; Zheng J; Wu R; Sun D
    BMC Microbiol; 2021 Feb; 21(1):57. PubMed ID: 33607940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.