These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 29584717)
1. Dynamic combination of sensory and reward information under time pressure. Farashahi S; Ting CC; Kao CH; Wu SW; Soltani A PLoS Comput Biol; 2018 Mar; 14(3):e1006070. PubMed ID: 29584717 [TBL] [Abstract][Full Text] [Related]
2. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. Rorie AE; Gao J; McClelland JL; Newsome WT PLoS One; 2010 Feb; 5(2):e9308. PubMed ID: 20174574 [TBL] [Abstract][Full Text] [Related]
3. Neural Signature of Value-Based Sensorimotor Prioritization in Humans. Blangero A; Kelly SP J Neurosci; 2017 Nov; 37(44):10725-10737. PubMed ID: 28982706 [TBL] [Abstract][Full Text] [Related]
4. Payoff Information Biases a Fast Guess Process in Perceptual Decision Making under Deadline Pressure: Evidence from Behavior, Evoked Potentials, and Quantitative Model Comparison. Noorbaloochi S; Sharon D; McClelland JL J Neurosci; 2015 Aug; 35(31):10989-1011. PubMed ID: 26245962 [TBL] [Abstract][Full Text] [Related]
5. Sensorimotor learning biases choice behavior: a learning neural field model for decision making. Klaes C; Schneegans S; Schöner G; Gail A PLoS Comput Biol; 2012; 8(11):e1002774. PubMed ID: 23166483 [TBL] [Abstract][Full Text] [Related]
6. The cost of accumulating evidence in perceptual decision making. Drugowitsch J; Moreno-Bote R; Churchland AK; Shadlen MN; Pouget A J Neurosci; 2012 Mar; 32(11):3612-28. PubMed ID: 22423085 [TBL] [Abstract][Full Text] [Related]
7. The effect of reward expectation on the time course of perceptual decisions. Tosoni A; Committeri G; Calluso C; Galati G Eur J Neurosci; 2017 May; 45(9):1152-1164. PubMed ID: 28263416 [TBL] [Abstract][Full Text] [Related]
8. Temporal integration of sensory evidence for saccade target selection. Ludwig CJ Vision Res; 2009 Nov; 49(23):2764-73. PubMed ID: 19686771 [TBL] [Abstract][Full Text] [Related]
9. Adaptive History Biases Result from Confidence-Weighted Accumulation of past Choices. Braun A; Urai AE; Donner TH J Neurosci; 2018 Mar; 38(10):2418-2429. PubMed ID: 29371318 [TBL] [Abstract][Full Text] [Related]
10. A neural model of the frontal eye fields with reward-based learning. Ye W; Liu S; Liu X; Yu Y Neural Netw; 2016 Sep; 81():39-51. PubMed ID: 27284696 [TBL] [Abstract][Full Text] [Related]
11. Learning to Choose: Behavioral Dynamics Underlying the Initial Acquisition of Decision-Making. White SR; Preston MW; Swanson K; Laubach M eNeuro; 2024 May; 11(5):. PubMed ID: 38724267 [TBL] [Abstract][Full Text] [Related]
12. Global gain modulation generates time-dependent urgency during perceptual choice in humans. Murphy PR; Boonstra E; Nieuwenhuis S Nat Commun; 2016 Nov; 7():13526. PubMed ID: 27882927 [TBL] [Abstract][Full Text] [Related]
13. Choice perseveration in value-based decision making: The impact of inter-trial interval and mood. Senftleben U; Schoemann M; Schwenke D; Richter S; Dshemuchadse M; Scherbaum S Acta Psychol (Amst); 2019 Jul; 198():102876. PubMed ID: 31280037 [TBL] [Abstract][Full Text] [Related]
14. Neural correlates of evidence accumulation in a perceptual decision task. Liu T; Pleskac TJ J Neurophysiol; 2011 Nov; 106(5):2383-98. PubMed ID: 21849612 [TBL] [Abstract][Full Text] [Related]
15. Modelling the learning of biomechanics and visual planning for decision-making of motor actions. Cos I; Khamassi M; Girard B J Physiol Paris; 2013 Nov; 107(5):399-408. PubMed ID: 23973913 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Pre-Supplementary Motor Area by Continuous Theta Burst Stimulation Leads to More Cautious Decision-making and More Efficient Sensory Evidence Integration. Tosun T; Berkay D; Sack AT; Çakmak YÖ; Balcı F J Cogn Neurosci; 2017 Aug; 29(8):1433-1444. PubMed ID: 28387589 [TBL] [Abstract][Full Text] [Related]
18. Neural evidence for adaptive strategy selection in value-based decision-making. Gluth S; Rieskamp J; Büchel C Cereb Cortex; 2014 Aug; 24(8):2009-21. PubMed ID: 23476024 [TBL] [Abstract][Full Text] [Related]
19. A low-frequency oscillatory neural signal in humans encodes a developing decision variable. Kubanek J; Snyder LH; Brunton BW; Brody CD; Schalk G Neuroimage; 2013 Dec; 83():795-808. PubMed ID: 23872495 [TBL] [Abstract][Full Text] [Related]
20. How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures of Reinforcement Learning. Correa CMC; Noorman S; Jiang J; Palminteri S; Cohen MX; Lebreton M; van Gaal S J Neurosci; 2018 Nov; 38(48):10338-10348. PubMed ID: 30327418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]