BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29584811)

  • 1. Learned protein embeddings for machine learning.
    Yang KK; Wu Z; Bedbrook CN; Arnold FH
    Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank.
    You R; Zhang Z; Xiong Y; Sun F; Mamitsuka H; Zhu S
    Bioinformatics; 2018 Jul; 34(14):2465-2473. PubMed ID: 29522145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses.
    Woloszynek S; Zhao Z; Chen J; Rosen GL
    PLoS Comput Biol; 2019 Feb; 15(2):e1006721. PubMed ID: 30807567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organizing the bacterial annotation space with amino acid sequence embeddings.
    Grigson SR; McKerral JC; Mitchell JG; Edwards RA
    BMC Bioinformatics; 2022 Sep; 23(1):385. PubMed ID: 36151519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.
    Kulmanov M; Khan MA; Hoehndorf R; Wren J
    Bioinformatics; 2018 Feb; 34(4):660-668. PubMed ID: 29028931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scoring alignments by embedding vector similarity.
    Ashrafzadeh S; Golding GB; Ilie S; Ilie L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38695119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProFET: Feature engineering captures high-level protein functions.
    Ofer D; Linial M
    Bioinformatics; 2015 Nov; 31(21):3429-36. PubMed ID: 26130574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning in proteins: evaluating novel protein learned representations for bioinformatics tasks.
    Fenoy E; Edera AA; Stegmayer G
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35758229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepLoc: prediction of protein subcellular localization using deep learning.
    Almagro Armenteros JJ; Sønderby CK; Sønderby SK; Nielsen H; Winther O
    Bioinformatics; 2017 Nov; 33(21):3387-3395. PubMed ID: 29036616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence alignment using machine learning for accurate template-based protein structure prediction.
    Makigaki S; Ishida T
    Bioinformatics; 2020 Jan; 36(1):104-111. PubMed ID: 31197318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale.
    Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embeddings from deep learning transfer GO annotations beyond homology.
    Littmann M; Heinzinger M; Dallago C; Olenyi T; Rost B
    Sci Rep; 2021 Jan; 11(1):1160. PubMed ID: 33441905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences.
    Chen Z; Zhao P; Li F; Leier A; Marquez-Lago TT; Wang Y; Webb GI; Smith AI; Daly RJ; Chou KC; Song J
    Bioinformatics; 2018 Jul; 34(14):2499-2502. PubMed ID: 29528364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GNE: a deep learning framework for gene network inference by aggregating biological information.
    Kc K; Li R; Cui F; Yu Q; Haake AR
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):38. PubMed ID: 30953525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TemStaPro: protein thermostability prediction using sequence representations from protein language models.
    Pudžiuvelytė I; Olechnovič K; Godliauskaite E; Sermokas K; Urbaitis T; Gasiunas G; Kazlauskas D
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38507682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the BERT model on nucleotide sequences with non-standard pre-training and evaluation of different k-mer embeddings.
    Zhang YZ; Bai Z; Imoto S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37815839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning.
    Elnaggar A; Heinzinger M; Dallago C; Rehawi G; Wang Y; Jones L; Gibbs T; Feher T; Angerer C; Steinegger M; Bhowmik D; Rost B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7112-7127. PubMed ID: 34232869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model.
    Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.