These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 2958483)

  • 1. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments.
    Craig R; Padrón R; Kendrick-Jones J
    J Cell Biol; 1987 Sep; 105(3):1319-27. PubMed ID: 2958483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction study of the structural changes accompanying phosphorylation of tarantula muscle.
    Padrón R; Panté N; Sosa H; Kendrick-Jones J
    J Muscle Res Cell Motil; 1991 Jun; 12(3):235-41. PubMed ID: 1874965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments.
    Brito R; Alamo L; Lundberg U; Guerrero JR; Pinto A; Sulbarán G; Gawinowicz MA; Craig R; Padrón R
    J Mol Biol; 2011 Nov; 414(1):44-61. PubMed ID: 21959262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phosphorylation by myosin light chain kinase on the structure of Limulus thick filaments.
    Levine RJ; Chantler PD; Kensler RW; Woodhead JL
    J Cell Biol; 1991 May; 113(3):563-72. PubMed ID: 2016336
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Sulbarán G; Biasutto A; Méndez F; Pinto A; Alamo L; Padrón R
    Biochem Biophys Res Commun; 2020 Mar; 524(1):198-204. PubMed ID: 31983430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity.
    Alamo L; Wriggers W; Pinto A; Bártoli F; Salazar L; Zhao FQ; Craig R; Padrón R
    J Mol Biol; 2008 Dec; 384(4):780-97. PubMed ID: 18951904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.
    Alamo L; Qi D; Wriggers W; Pinto A; Zhu J; Bilbao A; Gillilan RE; Hu S; Padrón R
    J Mol Biol; 2016 Mar; 428(6):1142-1164. PubMed ID: 26851071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The myosin interacting-heads motif present in live tarantula muscle explains tetanic and posttetanic phosphorylation mechanisms.
    Padrón R; Ma W; Duno-Miranda S; Koubassova N; Lee KH; Pinto A; Alamo L; Bolaños P; Tsaturyan A; Irving T; Craig R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11865-11874. PubMed ID: 32444484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes induced in Ca2+-regulated myosin filaments by Ca2+ and ATP.
    Frado LL; Craig R
    J Cell Biol; 1989 Aug; 109(2):529-38. PubMed ID: 2760106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between crossbridge structure and actomyosin ATPase activity in rat heart.
    Weisberg A; Winegrad S
    Circ Res; 1998 Jul; 83(1):60-72. PubMed ID: 9670919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Ca2+ on the structure of synthetic filaments of smooth muscle myosin.
    Podlubnaya Z; Kulikova N; Dabrowska R
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):547-54. PubMed ID: 10555073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications.
    Woodhead JL; Zhao FQ; Craig R
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8561-6. PubMed ID: 23650385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative dependence of the actin-activated Mg2+-ATPase activity of Acanthamoeba myosin II on the extent of filament phosphorylation.
    Atkinson MA; Lambooy PK; Korn ED
    J Biol Chem; 1989 Mar; 264(7):4127-32. PubMed ID: 2521858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes that occur in scallop myosin filaments upon activation.
    Vibert P; Craig R
    J Cell Biol; 1985 Sep; 101(3):830-7. PubMed ID: 4040918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 7-stranded structure of relaxed scallop muscle myosin filaments: support for a common head configuration in myosin-regulated muscles.
    Al-Khayat HA; Morris EP; Squire JM
    J Struct Biol; 2009 May; 166(2):183-94. PubMed ID: 19248832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Millisecond time-resolved changes occurring in Ca2+-regulated myosin filaments upon relaxation.
    Zhao FQ; Craig R
    J Mol Biol; 2008 Aug; 381(2):256-60. PubMed ID: 18585394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion.
    Pinto A; Sánchez F; Alamo L; Padrón R
    J Struct Biol; 2012 Dec; 180(3):469-78. PubMed ID: 22982253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of phosphorylation of the regulatory light chain of myosin from tarantula striated muscle.
    Hidalgo C; Craig R; Ikebe M; Padrón R
    J Muscle Res Cell Motil; 2001; 22(1):51-9. PubMed ID: 11563549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrangement of the heads of myosin in relaxed thick filaments from tarantula muscle.
    Crowther RA; Padrón R; Craig R
    J Mol Biol; 1985 Aug; 184(3):429-39. PubMed ID: 4046022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ causes release of myosin heads from the thick filament surface on the milliseconds time scale.
    Zhao FQ; Craig R
    J Mol Biol; 2003 Mar; 327(1):145-58. PubMed ID: 12614614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.