These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29584929)

  • 21. Confinement of Surface Plasmon Polaritons by Heterostructures of Plasmonic Crystals.
    Saito H; Mizuma S; Yamamoto N
    Nano Lett; 2015 Oct; 15(10):6789-93. PubMed ID: 26414000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers.
    Bigelow NW; Vaschillo A; Camden JP; Masiello DJ
    ACS Nano; 2013 May; 7(5):4511-9. PubMed ID: 23594310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators.
    Fang Y; Verre R; Shao L; Nordlander P; Käll M
    Nano Lett; 2016 Aug; 16(8):5183-90. PubMed ID: 27464003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.
    Yamamoto N
    Microscopy (Oxf); 2016 Aug; 65(4):282-95. PubMed ID: 27473259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes.
    Genç A; Patarroyo J; Sancho-Parramon J; Arenal R; Bastús NG; Puntes V; Arbiol J
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers.
    Schubert I; Sigle W; van Aken PA; Trautmann C; Toimil-Molares ME
    Nanoscale; 2015 Mar; 7(11):4935-41. PubMed ID: 25690984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping optical Bloch modes of a plasmonic square lattice in real and reciprocal spaces using cathodoluminescence spectroscopy.
    Bittorf PH; Davoodi F; Taleb M; Talebi N
    Opt Express; 2021 Oct; 29(21):34328-34340. PubMed ID: 34809226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator System.
    Coenen T; Schoen DT; Mann SA; Rodriguez SR; Brenny BJ; Polman A; Brongersma ML
    Nano Lett; 2015 Nov; 15(11):7666-70. PubMed ID: 26457569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes.
    Sato Y; Terauchi M
    Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography.
    Haberfehlner G; Schmidt FP; Schaffernak G; Hörl A; Trügler A; Hohenau A; Hofer F; Krenn JR; Hohenester U; Kothleitner G
    Nano Lett; 2017 Nov; 17(11):6773-6777. PubMed ID: 28981295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manipulating acoustic and plasmonic modes in gold nanostars.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun.
    Das P; Blazit JD; Tencé M; Zagonel LF; Auad Y; Lee YH; Ling XY; Losquin A; Colliex C; Stéphan O; García de Abajo FJ; Kociak M
    Ultramicroscopy; 2019 Aug; 203():44-51. PubMed ID: 31000482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fundamental Limit of Plasmonic Cathodoluminescence.
    Schmidt FP; Losquin A; Horák M; Hohenester U; Stöger-Pollach M; Krenn JR
    Nano Lett; 2021 Jan; 21(1):590-596. PubMed ID: 33336569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy.
    Barrow SJ; Rossouw D; Funston AM; Botton GA; Mulvaney P
    Nano Lett; 2014 Jul; 14(7):3799-808. PubMed ID: 24955651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes.
    Koh AL; Bao K; Khan I; Smith WE; Kothleitner G; Nordlander P; Maier SA; McComb DW
    ACS Nano; 2009 Oct; 3(10):3015-22. PubMed ID: 19772292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nearfield excited state imaging of bonding and antibonding plasmon modes in nanorod dimers via stimulated electron energy gain spectroscopy.
    Collette R; Garfinkel DA; Rack PD
    J Chem Phys; 2020 Jul; 153(4):044711. PubMed ID: 32752671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.