These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29584946)

  • 1. A Second Glass Transition in Pressure Collapsed Type II Clathrate Hydrates.
    Andersson O; Häussermann U
    J Phys Chem B; 2018 Apr; 122(15):4376-4384. PubMed ID: 29584946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence suggesting kinetic unfreezing of water mobility in two distinct processes in pressure-amorphized clathrate hydrates.
    Andersson O; B Brant Carvalho PH; Häussermann U; Hsu YJ
    Phys Chem Chem Phys; 2022 Aug; 24(34):20064-20072. PubMed ID: 35856694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitions in pressure-amorphized clathrate hydrates akin to those of amorphous ices.
    Andersson O; Brant Carvalho PHB; Hsu YJ; Häussermann U
    J Chem Phys; 2019 Jul; 151(1):014502. PubMed ID: 31272168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transitions in pressure collapsed clathrate hydrates.
    Andersson O; Nakazawa Y
    J Phys Chem B; 2015 Mar; 119(9):3846-53. PubMed ID: 25686530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate.
    Brant Carvalho PHB; Mace A; Bull CL; Funnell NP; Tulk CA; Andersson O; Häussermann U
    J Chem Phys; 2019 May; 150(20):204506. PubMed ID: 31153163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa.
    Andersson O; Johari GP
    J Chem Phys; 2011 Mar; 134(12):124903. PubMed ID: 21456699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature of the pressure-induced collapse of an ice clathrate by dielectric spectroscopy.
    Andersson O; Johari GP
    J Chem Phys; 2008 Dec; 129(23):234505. PubMed ID: 19102536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt.
    Tombari E; Presto S; Salvetti G; Johari GP
    J Chem Phys; 2006 Apr; 124(15):154507. PubMed ID: 16674242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water.
    Andersson O; Inaba A
    Phys Chem Chem Phys; 2005 Apr; 7(7):1441-9. PubMed ID: 19787966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-induced collapse of ice clathrate and hexagonal ice mixtures formed by freezing.
    Andersson O; Johari GP
    J Chem Phys; 2009 Sep; 131(11):114503. PubMed ID: 19778125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-amorphized cubic structure II clathrate hydrate: crystallization in slow motion.
    Bauer M; Többens DM; Mayer E; Loerting T
    Phys Chem Chem Phys; 2011 Feb; 13(6):2167-71. PubMed ID: 21103537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures.
    Andersson O; Johari GP
    J Chem Phys; 2016 Feb; 144(6):064504. PubMed ID: 26874494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transformations undergone by Triton X-100 probed by differential scanning calorimetry and dielectric relaxation spectroscopy.
    Merino EG; Rodrigues C; Viciosa MT; Melo C; Sotomayor J; Dionísio M; Correia NT
    J Phys Chem B; 2011 Nov; 115(43):12336-47. PubMed ID: 21928821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method to detect the volumetric glass --> liquid transition at high pressures: glycerol as a test case.
    Elsaesser MS; Kohl I; Mayer E; Loerting T
    J Phys Chem B; 2007 Jul; 111(28):8038-44. PubMed ID: 17595130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking microscopic guest properties to macroscopic observables in clathrate hydrates: guest-host hydrogen bonding.
    Alavi S; Susilo R; Ripmeester JA
    J Chem Phys; 2009 May; 130(17):174501. PubMed ID: 19425784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversibility and isotope effect of the calorimetric glass --> liquid transition of low-density amorphous ice.
    Elsaesser MS; Winkel K; Mayer E; Loerting T
    Phys Chem Chem Phys; 2010 Jan; 12(3):708-12. PubMed ID: 20066356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water's second glass transition.
    Amann-Winkel K; Gainaru C; Handle PH; Seidl M; Nelson H; Böhmer R; Loerting T
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17720-5. PubMed ID: 24101518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling nonclassical content of clathrate hydrates through the choice of molecular guests and temperature.
    Monreal IA; Devlin JP; Maşlakcı Z; Çiçek MB; Uras-Aytemiz N
    J Phys Chem A; 2011 Jun; 115(23):5822-32. PubMed ID: 21171641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.
    Chiu J; Starr FW; Giovambattista N
    J Chem Phys; 2014 Mar; 140(11):114504. PubMed ID: 24655190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass-liquid transition of water at high pressure.
    Andersson O
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11013-6. PubMed ID: 21690361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.