These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2958589)

  • 1. Bilateral coordination in human infants: stepping on a split-belt treadmill.
    Thelen E; Ulrich BD; Niles D
    J Exp Psychol Hum Percept Perform; 1987 Aug; 13(3):405-10. PubMed ID: 2958589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans.
    Yang JF; Lamont EV; Pang MY
    J Neurosci; 2005 Jul; 25(29):6869-76. PubMed ID: 16033896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hidden skills: a dynamic systems analysis of treadmill stepping during the first year.
    Thelen E; Ulrich BD
    Monogr Soc Res Child Dev; 1991; 56(1):1-98; discussion 99-104. PubMed ID: 1922136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could different directions of infant stepping be controlled by the same locomotor central pattern generator?
    Lamb T; Yang JF
    J Neurophysiol; 2000 May; 83(5):2814-24. PubMed ID: 10805679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Left-right coordination from simple to extreme conditions during split-belt locomotion in the chronic spinal adult cat.
    Frigon A; Desrochers É; Thibaudier Y; Hurteau MF; Dambreville C
    J Physiol; 2017 Jan; 595(1):341-361. PubMed ID: 27426732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treadmill-elicited stepping in seven-month-old infants.
    Thelen E
    Child Dev; 1986 Dec; 57(6):1498-506. PubMed ID: 3802974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of spatial and temporal control of step length symmetry in the transfer of locomotor adaptation from a motorized to a non-motorized split-belt treadmill.
    Gregory DL; Sup FC; Choi JT
    R Soc Open Sci; 2021 Feb; 8(2):202084. PubMed ID: 33972880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ideal treadmill speed to stimulate stepping in infants.
    Schlittler DX; Sanches MB; Carvalho RP; Barela JA
    Rev Bras Fisioter; 2010; 14(6):483-90. PubMed ID: 21340242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of phase durations, phase variations, and temporal coordination of the four limbs during quadrupedal split-belt locomotion in intact adult cats.
    D'Angelo G; Thibaudier Y; Telonio A; Hurteau MF; Kuczynski V; Dambreville C; Frigon A
    J Neurophysiol; 2014 Oct; 112(8):1825-37. PubMed ID: 25031257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
    Hamzey RJ; Kirk EM; Vasudevan EV
    Exp Brain Res; 2016 Jun; 234(6):1479-90. PubMed ID: 26790424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating stepping patterns: hidden abilities of 11-month-old infants with Down syndrome.
    Ulrich BD; Ulrich DA; Collier DH
    Dev Med Child Neurol; 1992 Mar; 34(3):233-9. PubMed ID: 1532783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel optic flow pattern speeds split-belt locomotor adaptation.
    Finley JM; Statton MA; Bastian AJ
    J Neurophysiol; 2014 Mar; 111(5):969-76. PubMed ID: 24335220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat.
    Kuczynski V; Telonio A; Thibaudier Y; Hurteau MF; Dambreville C; Desrochers E; Doelman A; Ross D; Frigon A
    J Physiol; 2017 Sep; 595(17):5987-6006. PubMed ID: 28643899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input.
    Prokop T; Berger W; Zijlstra W; Dietz V
    Exp Brain Res; 1995; 106(3):449-56. PubMed ID: 8983988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and Slow Adaptations of Interlimb Coordination
    Aoi S; Amano T; Fujiki S; Senda K; Tsuchiya K
    Front Robot AI; 2021; 8():697612. PubMed ID: 34422913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arm movements during split-belt walking reveal predominant patterns of interlimb coupling.
    MacLellan MJ; Qaderdan K; Koehestanie P; Duysens J; McFadyen BJ
    Hum Mov Sci; 2013 Feb; 32(1):79-90. PubMed ID: 23176813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treadmill stepping in infants born prematurely.
    Davis DW; Thelen E; Keck J
    Early Hum Dev; 1994 Nov; 39(3):211-23. PubMed ID: 7712955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat.
    Thibaudier Y; Hurteau MF; Telonio A; Frigon A
    Neuroscience; 2013 Jun; 240():13-26. PubMed ID: 23485807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg movements of stick insects walking with five legs on a treadwheel and with one leg on a motor-driven belt. I. General results and 1:1-coordination.
    Foth E; Bässler U
    Biol Cybern; 1985; 51(5):313-8. PubMed ID: 3978146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infant stepping: a method to study the sensory control of human walking.
    Yang JF; Stephens MJ; Vishram R
    J Physiol; 1998 Mar; 507 ( Pt 3)(Pt 3):927-37. PubMed ID: 9508851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.