BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29587236)

  • 1. Ciprofloxacin-metal complexes -stability and toxicity tests in the presence of humic substances.
    Cuprys A; Pulicharla R; Lecka J; Brar SK; Drogui P; Surampalli RY
    Chemosphere; 2018 Jul; 202():549-559. PubMed ID: 29587236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro biopharmaceutical evaluation of ciprofloxacin/metal cation complexes for pulmonary administration.
    Brillault J; Tewes F; Couet W; Olivier JC
    Eur J Pharm Sci; 2017 Jan; 97():92-98. PubMed ID: 27863308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.
    Porras J; Bedoya C; Silva-Agredo J; Santamaría A; Fernández JJ; Torres-Palma RA
    Water Res; 2016 May; 94():1-9. PubMed ID: 26921708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Cu and Ca cations and Fe/Al coating on ciprofloxacin sorption onto sand media.
    Chen H; Ma LQ; Gao B; Gu C
    J Hazard Mater; 2013 May; 252-253():375-81. PubMed ID: 23603841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imipenem-metal complexes: Computational analysis and toxicity studies with wastewater model microorganisms.
    Khurana P; Pulicharla R; Brar SK
    Environ Res; 2023 Dec; 239(Pt 2):117275. PubMed ID: 37827363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of complexation with humic substances on diffusion of metal ions in water.
    Furukawa K; Takahashi Y
    Chemosphere; 2008 Nov; 73(8):1272-8. PubMed ID: 18722642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative.
    El-Attar MS; Sadeek SA; Abd El-Hamid SM; Elshafie HS
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of metal-humus complexes in river waters of the Upper Amur basin, Russia.
    Levshina S
    Environ Monit Assess; 2017 Dec; 190(1):18. PubMed ID: 29236175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Cu and Ca cations on ciprofloxacin transport in saturated porous media.
    Chen H; Ma LQ; Gao B; Gu C
    J Hazard Mater; 2013 Nov; 262():805-11. PubMed ID: 24140531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability constants of metal-humic acid complexes and its role in environmental detoxification.
    Pandey AK; Pandey SD; Misra V
    Ecotoxicol Environ Saf; 2000 Oct; 47(2):195-200. PubMed ID: 11023698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions.
    Ma X; Li L; Xu C; Wei H; Wang X; Yang X
    Molecules; 2012 Aug; 17(8):9379-96. PubMed ID: 22864244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal complexation by humic substances in seawater.
    Yang R; Van den Berg CM
    Environ Sci Technol; 2009 Oct; 43(19):7192-7. PubMed ID: 19848121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions.
    Fries E; Crouzet C; Michel C; Togola A
    Sci Total Environ; 2016 Sep; 563-564():971-6. PubMed ID: 26765511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water.
    Li S; Zhang X; Huang Y
    J Hazard Mater; 2017 Jan; 321():711-719. PubMed ID: 27701060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers.
    Burba P; Jakubowski B; Kuckuk R; Küllmer K; Heumann KG
    Fresenius J Anal Chem; 2000 Dec; 368(7):689-96. PubMed ID: 11227549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of antibiotic resistance in Klebsiella pneumoniae exposed to sequential in vitro antibiotic treatments.
    Kim J; Jo A; Chukeatirote E; Ahn J
    Ann Clin Microbiol Antimicrob; 2016 Dec; 15(1):60. PubMed ID: 27938381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity.
    Chen H; Gao B; Yang LY; Ma LQ
    J Contam Hydrol; 2015 Feb; 173():1-7. PubMed ID: 25528132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems.
    Wang H; Hu C; Liu L; Xing X
    J Hazard Mater; 2017 Oct; 339():174-181. PubMed ID: 28648729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release.
    García MC; Cuggino JC; Rosset CI; Páez PL; Strumia MC; Manzo RH; Alovero FL; Alvarez Igarzabal CI; Jimenez-Kairuz AF
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():236-46. PubMed ID: 27612709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of ciprofloxacin by humic substances: a molecular dynamics study.
    Aristilde L; Sposito G
    Environ Toxicol Chem; 2010 Jan; 29(1):90-8. PubMed ID: 20821423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.