These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29587236)

  • 21. Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials.
    Carmosini N; Lee LS
    Chemosphere; 2009 Oct; 77(6):813-20. PubMed ID: 19716154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactions of compost-derived humic substances with lead, copper, cadmium, and zinc.
    Chang Chien SW; Wang MC; Huang CC
    Chemosphere; 2006 Aug; 64(8):1353-61. PubMed ID: 16490235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper(II) complexes of the fluoroquinolone antimicrobial ciprofloxacin. Synthesis, X-ray structural characterization, and potentiometric study.
    Wallis SC; Gahan LR; Charles BG; Hambley TW; Duckworth PA
    J Inorg Biochem; 1996 Apr; 62(1):1-16. PubMed ID: 8936419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge.
    Pulicharla R; Das RK; Brar SK; Drogui P; Sarma SJ; Verma M; Surampalli RY; Valero JR
    Sci Total Environ; 2015 Nov; 532():669-75. PubMed ID: 26119381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size distribution, complexing capacity, and stability of phosphate-metal-humic complexes.
    Guardado I; Urrutia O; García-Mina JM
    J Agric Food Chem; 2007 Jan; 55(2):408-13. PubMed ID: 17227072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH.
    Pei Z; Shan XQ; Kong J; Wen B; Owens G
    Environ Sci Technol; 2010 Feb; 44(3):915-20. PubMed ID: 20030339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.
    Aristilde L; Sposito G
    Environ Toxicol Chem; 2013 Jul; 32(7):1467-78. PubMed ID: 23456646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amorphous Polymeric Drug Salts as Ionic Solid Dispersion Forms of Ciprofloxacin.
    Mesallati H; Umerska A; Paluch KJ; Tajber L
    Mol Pharm; 2017 Jul; 14(7):2209-2223. PubMed ID: 28570079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of complexation on the accumulation and elimination kinetics of cadmium and ciprofloxacin in the earthworm Eisenia fetida.
    Wen B; Huang R; Wang P; Zhou Y; Shan XQ; Zhang S
    Environ Sci Technol; 2011 May; 45(10):4339-45. PubMed ID: 21513268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of efflux pump inhibitor 1-(1-naphthylmethyl)-piperazine to MIC values of ciprofloxacin in ciprofloxacin resistant gram-negative bacteria].
    Coban AY; Bayram Z; Sezgin FM; Durupinar B
    Mikrobiyol Bul; 2009 Jul; 43(3):457-61. PubMed ID: 19795621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads.
    Afzal MZ; Yue R; Sun XF; Song C; Wang SG
    J Colloid Interface Sci; 2019 May; 543():76-83. PubMed ID: 30782519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intercalation and adsorption of ciprofloxacin by layered chalcogenides and kinetics study.
    Li JR; Wang YX; Wang X; Yuan B; Fu ML
    J Colloid Interface Sci; 2015 Sep; 453():69-78. PubMed ID: 25965434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: Microbial toxicity and earthworm responses.
    Sidhu H; O'Connor G; Ogram A; Kumar K
    Sci Total Environ; 2019 Feb; 650(Pt 1):18-26. PubMed ID: 30195128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Desorption of ciprofloxacin from clay mineral surfaces.
    Wu Q; Li Z; Hong H; Li R; Jiang WT
    Water Res; 2013 Jan; 47(1):259-68. PubMed ID: 23123088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photodegradation of Ciprofloxacin, Clarithromycin and Trimethoprim: Influence of pH and Humic Acids.
    Rodríguez-López L; Cela-Dablanca R; Núñez-Delgado A; Álvarez-Rodríguez E; Fernández-Calviño D; Arias-Estévez M
    Molecules; 2021 May; 26(11):. PubMed ID: 34064068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation products formation of ciprofloxacin in UVA/LED and UVA/LED/TiO
    Li S; Hu J
    Water Res; 2018 Apr; 132():320-330. PubMed ID: 29339304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species.
    Perelomov LV; Sarkar B; Sizova OI; Chilachava KB; Shvikin AY; Perelomova IV; Atroshchenko YM
    Ecotoxicol Environ Saf; 2018 Apr; 151():178-183. PubMed ID: 29353168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bivalent transition metal complexes of ONO donor hydrazone ligand: Synthesis, structural characterization and antimicrobial activity.
    Bhaskar R; Salunkhe N; Yaul A; Aswar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():621-7. PubMed ID: 26163785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-molecular-weight organic acids correlate with cultivar variation in ciprofloxacin accumulation in Brassica parachinensis L.
    Zhao HM; Xiang L; Wu XL; Jiang YN; Li H; Li YW; Cai QY; Mo CH; Liu JS; Wong MH
    Sci Rep; 2017 Aug; 7(1):10301. PubMed ID: 28860530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.