These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 29587534)

  • 61. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.
    Jaenisch R; Bird A
    Nat Genet; 2003 Mar; 33 Suppl():245-54. PubMed ID: 12610534
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The identification and characterization of human Sister-of-Mammalian Grainyhead (SOM) expands the grainyhead-like family of developmental transcription factors.
    Ting SB; Wilanowski T; Cerruti L; Zhao LL; Cunningham JM; Jane SM
    Biochem J; 2003 Mar; 370(Pt 3):953-62. PubMed ID: 12549979
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status.
    Friso S; Choi SW; Girelli D; Mason JB; Dolnikowski GG; Bagley PJ; Olivieri O; Jacques PF; Rosenberg IH; Corrocher R; Selhub J
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5606-11. PubMed ID: 11929966
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comprehensive analysis of CpG islands in human chromosomes 21 and 22.
    Takai D; Jones PA
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3740-5. PubMed ID: 11891299
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The relation between erythrocyte volume and folate levels is influenced by a common mutation in the methylenetetrahydrofolate reductase (MTHFR) gene (C677T).
    Lalouschek W; Aull S; Serles W; Wolfsberger M; Deecke L; Pabinger-Fasching I; Mannhalter C
    J Investig Med; 2000 Jan; 48(1):14-20. PubMed ID: 10695265
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DNA hypomethylation can activate Xist expression and silence X-linked genes.
    Panning B; Jaenisch R
    Genes Dev; 1996 Aug; 10(16):1991-2002. PubMed ID: 8769643
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hypomethylation of GRHL3 gene is associated with the occurrence of neural tube defects.
    Tian T; Wang L; Shen Y; Zhang B; Finnell RH; Ren A
    Epigenomics; 2018 Jul; 10(7):891-901. PubMed ID: 29587534
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Grainyhead genes and mammalian neural tube closure.
    Gustavsson P; Copp AJ; Greene ND
    Birth Defects Res A Clin Mol Teratol; 2008 Oct; 82(10):728-35. PubMed ID: 18683893
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?
    Rochtus A; Jansen K; Van Geet C; Freson K
    Mini Rev Med Chem; 2015; 15(13):1095-102. PubMed ID: 26349489
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects.
    Leduc RY; Singh P; McDermid HE
    Birth Defects Res; 2017 Jan; 109(2):140-152. PubMed ID: 27768235
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A new perspective on neural tube defects: folic acid and microRNA misexpression.
    Shookhoff JM; Gallicano GI
    Genesis; 2010 May; 48(5):282-94. PubMed ID: 20229516
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Planar cell polarity genes and neural tube closure.
    Ueno N; Greene ND
    Birth Defects Res C Embryo Today; 2003 Nov; 69(4):318-24. PubMed ID: 14745972
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Etiology, pathogenesis and prevention of neural tube defects.
    Padmanabhan R
    Congenit Anom (Kyoto); 2006 Jun; 46(2):55-67. PubMed ID: 16732763
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression.
    Beaudin AE; Stover PJ
    Birth Defects Res C Embryo Today; 2007 Sep; 81(3):183-203. PubMed ID: 17963270
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A consideration of the evidence that genetic defects in planar cell polarity contribute to the etiology of human neural tube defects.
    Juriloff DM; Harris MJ
    Birth Defects Res A Clin Mol Teratol; 2012 Oct; 94(10):824-40. PubMed ID: 23024041
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Apparent lability of neural tube closure in laboratory animals and humans.
    DeSesso JM; Scialli AR; Holson JF
    Am J Med Genet; 1999 Nov; 87(2):143-62. PubMed ID: 10533029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exploring epigenomic mechanisms of neural tube defects using multi-omics methods and data.
    Huang W; Yuan Z; Gu H
    Ann N Y Acad Sci; 2022 Sep; 1515(1):50-60. PubMed ID: 35666948
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure.
    Harris MJ; Juriloff DM
    Birth Defects Res A Clin Mol Teratol; 2010 Aug; 88(8):653-69. PubMed ID: 20740593
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects.
    Harris MJ; Juriloff DM
    Birth Defects Res A Clin Mol Teratol; 2007 Mar; 79(3):187-210. PubMed ID: 17177317
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genetic evidence in planar cell polarity signaling pathway in human neural tube defects.
    Cai C; Shi O
    Front Med; 2014 Mar; 8(1):68-78. PubMed ID: 24307374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.