These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29588495)

  • 1. Drinking water microbiome assembly induced by water stagnation.
    Ling F; Whitaker R; LeChevallier MW; Liu WT
    ISME J; 2018 Jun; 12(6):1520-1531. PubMed ID: 29588495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.
    Ji P; Parks J; Edwards MA; Pruden A
    PLoS One; 2015; 10(10):e0141087. PubMed ID: 26495985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water.
    Chen L; Jia RB; Li L
    Environ Sci Process Impacts; 2013 Jul; 15(7):1332-40. PubMed ID: 23702591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study.
    Inkinen J; Kaunisto T; Pursiainen A; Miettinen IT; Kusnetsov J; Riihinen K; Keinänen-Toivola MM
    Water Res; 2014 Feb; 49():83-91. PubMed ID: 24317021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Case study: Fixture water use and drinking water quality in a new residential green building.
    Salehi M; Abouali M; Wang M; Zhou Z; Nejadhashemi AP; Mitchell J; Caskey S; Whelton AJ
    Chemosphere; 2018 Mar; 195():80-89. PubMed ID: 29253792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drinking water microbiology--from measurement to management.
    Proctor CR; Hammes F
    Curr Opin Biotechnol; 2015 Jun; 33():87-94. PubMed ID: 25578740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of water heater temperature setting and water use frequency on the building plumbing microbiome.
    Ji P; Rhoads WJ; Edwards MA; Pruden A
    ISME J; 2017 Jun; 11(6):1318-1330. PubMed ID: 28282040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct evidence of microbiological water quality changes on bacterial quantity and community caused by plumbing system.
    Li J; Ren A; van der Mark E; Liu G
    J Environ Sci (China); 2022 Jun; 116():175-183. PubMed ID: 35219416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.
    Douterelo I; Husband S; Boxall JB
    Water Res; 2014 May; 54():100-14. PubMed ID: 24565801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replicable simulation of distal hot water premise plumbing using convectively-mixed pipe reactors.
    Spencer MS; Cullom AC; Rhoads WJ; Pruden A; Edwards MA
    PLoS One; 2020; 15(9):e0238385. PubMed ID: 32936810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling characteristics to predict Legionella contamination risk - Surveillance of drinking water plumbing systems and identification of risk areas.
    Völker S; Schreiber C; Kistemann T
    Int J Hyg Environ Health; 2016 Jan; 219(1):101-9. PubMed ID: 26481275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Identification of Systemic Contaminations with Legionella Spec. in Drinking Water Plumbing Systems: Sampling Strategies and Corresponding Parameters].
    Völker S; Schreiber C; Müller H; Zacharias N; Kistemann T
    Gesundheitswesen; 2017 May; 79(5):407-414. PubMed ID: 26619220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of drinking water contaminants and odor impacts caused by green building cross-linked polyethylene (PEX) plumbing systems.
    Kelley KM; Stenson AC; Dey R; Whelton AJ
    Water Res; 2014 Dec; 67():19-32. PubMed ID: 25259680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the impacts of intermittent supply on the drinking water microbiome.
    Bautista-de Los Santos QM; Chavarria KA; Nelson KL
    Curr Opin Biotechnol; 2019 Jun; 57():167-174. PubMed ID: 31100615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling lead concentration in drinking water of residential plumbing pipes and hot water tanks.
    Chowdhury S; Kabir F; Mazumder MAJ; Zahir MH
    Sci Total Environ; 2018 Sep; 635():35-44. PubMed ID: 29660725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm.
    Wang H; Masters S; Edwards MA; Falkinham JO; Pruden A
    Environ Sci Technol; 2014; 48(3):1426-35. PubMed ID: 24401122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.
    Zlatanović L; van der Hoek JP; Vreeburg JHG
    Water Res; 2017 Oct; 123():761-772. PubMed ID: 28732329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.
    Lautenschlager K; Boon N; Wang Y; Egli T; Hammes F
    Water Res; 2010 Sep; 44(17):4868-77. PubMed ID: 20696451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of lead release potential of new premise plumbing materials.
    Lei IL; Ng DQ; Sable SS; Lin YP
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27971-27981. PubMed ID: 30066071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems.
    Proctor CR; Dai D; Edwards MA; Pruden A
    Microbiome; 2017 Oct; 5(1):130. PubMed ID: 28978350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.