These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29588665)

  • 21. Quantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobiose.
    Munir RI; Spicer V; Shamshurin D; Krokhin OV; Wilkins J; Ramachandran U; Sparling R; Levin DB
    J Proteomics; 2015 Jul; 125():41-53. PubMed ID: 25957533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secretomic analyses of
    Ren Z; You W; Wu S; Poetsch A; Xu C
    Biotechnol Biofuels; 2019; 12():183. PubMed ID: 31338125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity.
    Kim SK; Himmel ME; Bomble YJ; Westpheling J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29101202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass.
    Lochner A; Giannone RJ; Keller M; Antranikian G; Graham DE; Hettich RL
    J Proteome Res; 2011 Dec; 10(12):5302-14. PubMed ID: 21988591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous co-expression of two β-glucanases and a cellobiose phosphorylase resulted in a significant increase in the cellulolytic activity of the Caldicellulosiruptor bescii exoproteome.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    J Ind Microbiol Biotechnol; 2019 May; 46(5):687-695. PubMed ID: 30783893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated omics analyses reveal the details of metabolic adaptation of
    Poudel S; Giannone RJ; Rodriguez M; Raman B; Martin MZ; Engle NL; Mielenz JR; Nookaew I; Brown SD; Tschaplinski TJ; Ussery D; Hettich RL
    Biotechnol Biofuels; 2017; 10():14. PubMed ID: 28077967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular secretion of noncatalytic plant cell wall-binding proteins by the cellulolytic thermophile Caldicellulosiruptor bescii.
    Yokoyama H; Yamashita T; Morioka R; Ohmori H
    J Bacteriol; 2014 Nov; 196(21):3784-92. PubMed ID: 25157080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous expression of a β-D-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1643-1651. PubMed ID: 28942503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii.
    Ye L; Su X; Schmitz GE; Moon YH; Zhang J; Mackie RI; Cann IK
    Appl Environ Microbiol; 2012 Oct; 78(19):7048-59. PubMed ID: 22843537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.
    Zurawski JV; Conway JM; Lee LL; Simpson HJ; Izquierdo JA; Blumer-Schuette S; Nookaew I; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7159-70. PubMed ID: 26253670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features.
    Meng DD; Ying Y; Zhang KD; Lu M; Li FL
    Mol Biosyst; 2015 Nov; 11(11):3164-73. PubMed ID: 26392378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SGNH hydrolase-type esterase domain containing Cbes-AcXE2: a novel and thermostable acetyl xylan esterase from Caldicellulosiruptor bescii.
    Soni S; Sathe SS; Odaneth AA; Lali AM; Chandrayan SK
    Extremophiles; 2017 Jul; 21(4):687-697. PubMed ID: 28444450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii.
    Basen M; Rhaesa AM; Kataeva I; Prybol CJ; Scott IM; Poole FL; Adams MW
    Bioresour Technol; 2014; 152():384-92. PubMed ID: 24316482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile
    Jia X; Han Y
    Biotechnol Biofuels; 2019; 12():143. PubMed ID: 31198440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor.
    Blumer-Schuette SE; Lewis DL; Kelly RM
    Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose.
    Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB
    BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Secretome Analysis of
    Contato AG; Borelli TC; Buckeridge MS; Rogers J; Hartson S; Prade RA; Polizeli MLTM
    J Fungi (Basel); 2024 Feb; 10(2):. PubMed ID: 38392793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii.
    Su X; Han Y; Dodd D; Moon YH; Yoshida S; Mackie RI; Cann IK
    Appl Environ Microbiol; 2013 Mar; 79(5):1481-90. PubMed ID: 23263957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.