BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29588999)

  • 1. First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn
    Choi D; Kang J; Park J; Han B
    Phys Chem Chem Phys; 2018 May; 20(17):11592-11597. PubMed ID: 29588999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries.
    Intan NN; Pfaendtner J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nonsolvolytic fluorine/LiNO
    Tang T; Utomo NW; Zheng JXK; Archer LA
    RSC Adv; 2024 May; 14(21):14964-14972. PubMed ID: 38737648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries.
    Xing L; Zheng X; Schroeder M; Alvarado J; von Wald Cresce A; Xu K; Li Q; Li W
    Acc Chem Res; 2018 Feb; 51(2):282-289. PubMed ID: 29381050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Simulations for the Surface Evolution and Mn Dissolution in the Fully Delithiated Spinel LiMn
    Sun X; Xiao R; Yu X; Li H
    Langmuir; 2021 May; 37(17):5252-5259. PubMed ID: 33874720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O
    Xu S; Luo G; Jacobs R; Fang S; Mahanthappa MK; Hamers RJ; Morgan D
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20545-20553. PubMed ID: 28557415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition.
    Pan SH; Nachimuthu S; Hwang BJ; Brunklaus G; Jiang JC
    J Colloid Interface Sci; 2023 Nov; 649():804-814. PubMed ID: 37390528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.
    Okuno Y; Ushirogata K; Sodeyama K; Tateyama Y
    Phys Chem Chem Phys; 2016 Mar; 18(12):8643-53. PubMed ID: 26948716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium-Metal Anode Surface.
    Liu Y; Yu P; Wu Y; Yang H; Xie M; Huai L; Goddard WA; Cheng T
    J Phys Chem Lett; 2021 Feb; 12(4):1300-1306. PubMed ID: 33502211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example.
    Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C
    ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab Initio Modeling of Transition Metal Dissolution from the LiNi
    Intan NN; Klyukin K; Alexandrov V
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20110-20116. PubMed ID: 31081328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of vinylene carbonate on SEI formation on LiMn
    Phan QTN; Kawamura J; Kurihara K
    Phys Chem Chem Phys; 2022 Oct; 24(41):25611-25619. PubMed ID: 36254777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethylsilyl Compounds for the Interfacial Stabilization of Thiophosphate-Based Solid Electrolytes in All-Solid-State Batteries.
    Kim K; Kim T; Song G; Lee S; Jung MS; Ha S; Ha AR; Lee KT
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303308. PubMed ID: 37867236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of ethylammonium tetrafluoroborate [EtNH
    Clarke-Hannaford J; Breedon M; Best AS; Spencer MJS
    Phys Chem Chem Phys; 2019 May; 21(19):10028-10037. PubMed ID: 31044201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes.
    Yim T; Han YK
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32851-32858. PubMed ID: 28880070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building Polymeric Framework Layer for Stable Solid Electrolyte Interphase on Natural Graphite Anode.
    Zhao Y; Wang Y; Liang R; Zhu G; Xiong W; Zheng H
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.