BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29589034)

  • 1. Melatonin-directed micellization: a case for tryptophan metabolites and their classical bioisosteres as templates for the self-assembly of bipyridinium-based supramolecular amphiphiles in water.
    Wang Z; Cui H; Sun Z; Roch LM; Goldner AN; Nour HF; Sue AC; Baldridge KK; Olson MA
    Soft Matter; 2018 Apr; 14(15):2893-2905. PubMed ID: 29589034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical and non-classical melatonin receptor agonist-directed micellization of bipyridinium-based supramolecular amphiphiles in water.
    Sun Z; Xi L; Zheng K; Zhang Z; Baldridge KK; Olson MA
    Soft Matter; 2020 May; 16(20):4788-4799. PubMed ID: 32400822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible morphological changes of assembled supramolecular amphiphiles triggered by pH-modulated host-guest interactions.
    Olson MA; Messina MS; Thompson JR; Dawson TJ; Goldner AN; Gaspar DK; Vazquez M; Lehrman JA; Sue AC
    Org Biomol Chem; 2016 Jun; 14(24):5714-20. PubMed ID: 26880344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.
    Wang C; Wang Z; Zhang X
    Acc Chem Res; 2012 Apr; 45(4):608-18. PubMed ID: 22242811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gemini-Type Supramolecular Amphiphile Based on a Water-Soluble Pillar[5]arene and an Azastilbene Guest and Its Application in Stimuli-Responsive Self-Assemblies.
    Lv X; Xia D; Zuo Y; Wu X; Wei X; Wang P
    Langmuir; 2019 Jun; 35(25):8383-8388. PubMed ID: 31137934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template-directed self-assembly by way of molecular recognition at the micellar-solvent interface: modulation of the critical micelle concentration.
    Olson MA; Thompson JR; Dawson TJ; Hernandez CM; Messina MS; O'Neal T
    Org Biomol Chem; 2013 Oct; 11(38):6483-92. PubMed ID: 23955299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid worm-like and proto-micelles: water solubilization in amphiphile-oil solutions.
    Qiao B; Littrell KC; Ellis RJ
    Phys Chem Chem Phys; 2018 May; 20(18):12908-12915. PubMed ID: 29700533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bis-Bipyridinium Gemini Surfactant-Based Supramolecular Helical Fibers and Solid State Thermochromism.
    Xu Y; Yuan T; Nour HF; Fang L; Olson MA
    Chemistry; 2018 Nov; 24(62):16558-16569. PubMed ID: 30168870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational transition of a non-associative fluorinated amphiphile in aqueous solution. II. Conformational transition
    Taraban MB; Deredge DJ; Smith ME; Briggs KT; Feng Y; Li Y; Jiang ZX; Wintrode PL; Yu YB
    RSC Adv; 2019 Jan; 9(4):1956-1966. PubMed ID: 35516151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of phase behavior of some non-ionic surfactants at the air-water interface on micellization in the bulk.
    Islam N; Kato T
    J Colloid Interface Sci; 2002 Aug; 252(2):365-72. PubMed ID: 16290801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent supramolecular assembly of aromatic block molecules in aqueous solution.
    Li W; Kim Y; Lee M
    Nanoscale; 2013 Sep; 5(17):7711-23. PubMed ID: 23881254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular assemblies of surfactants and lipid derivatives on free-standing hybrid nanofilms.
    Vendamme R; Kunitake T
    Soft Matter; 2008 Mar; 4(4):797-804. PubMed ID: 32907185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media.
    Chen S; Costil R; Leung FK; Feringa BL
    Angew Chem Int Ed Engl; 2021 May; 60(21):11604-11627. PubMed ID: 32936521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Chemistry of Conical Fullerene Amphiphiles in Water.
    Harano K; Nakamura E
    Acc Chem Res; 2019 Aug; 52(8):2090-2100. PubMed ID: 31390187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New biodegradable amphiphilic block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by novel aluminum metal complexes. II. Micellization and solution to gel transition.
    Yang J; Jia L; Hao Q; Li Y; Li Q; Fang Q; Cao A
    Macromol Biosci; 2005 Sep; 5(9):896-903. PubMed ID: 16134088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione sensitive vesicles prepared from supramolecular amphiphiles.
    Mobley EB; Byrd N; Yim MG; Gariepy R; Rieder M; Ward S
    Soft Matter; 2021 Nov; 17(42):9664-9669. PubMed ID: 34633020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.