These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 29589128)
41. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor. Moulick S; Alam R; Pal AN ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003 [TBL] [Abstract][Full Text] [Related]
42. Origin of noise in liquid-gated Si nanowire troponin biosensors. Kutovyi Y; Zadorozhnyi I; Hlukhova H; Handziuk V; Petrychuk M; Ivanchuk A; Vitusevich S Nanotechnology; 2018 Apr; 29(17):175202. PubMed ID: 29446349 [TBL] [Abstract][Full Text] [Related]
43. Acrylamide Hydrogel-Modified Silicon Nanowire Field-Effect Transistors for pH Sensing. Li G; Wei Q; Wei S; Zhang J; Jin Q; Wang G; Hu J; Zhu Y; Kong Y; Zhang Q; Zhao H; Wei F; Tu H Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745409 [TBL] [Abstract][Full Text] [Related]
44. Experimental study on the subthreshold swing of silicon nanowire transistors. Zhang Y; Xiong Y; Yang X; Wang Y; Han W; Yang F J Nanosci Nanotechnol; 2010 Nov; 10(11):7113-6. PubMed ID: 21137876 [TBL] [Abstract][Full Text] [Related]
45. A CMOS-compatible poly-Si nanowire device with hybrid sensor/memory characteristics for System-on-Chip applications. Chen MC; Chen HY; Lin CY; Chien CH; Hsieh TF; Horng JT; Qiu JT; Huang CC; Ho CH; Yang FL Sensors (Basel); 2012; 12(4):3952-63. PubMed ID: 22666012 [TBL] [Abstract][Full Text] [Related]
46. Fabrication of ring oscillators using organic molecules of phenacene and perylenedicarboximide. Fioravanti N; Pierantoni L; Mencarelli D; Turchetti C; Hamao S; Okamoto H; Goto H; Eguchi R; Fujiwara A; Kubozono Y RSC Adv; 2021 Feb; 11(13):7538-7551. PubMed ID: 35423277 [TBL] [Abstract][Full Text] [Related]
47. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors. Morkötter S; Jeon N; Rudolph D; Loitsch B; Spirkoska D; Hoffmann E; Döblinger M; Matich S; Finley JJ; Lauhon LJ; Abstreiter G; Koblmüller G Nano Lett; 2015 May; 15(5):3295-302. PubMed ID: 25923841 [TBL] [Abstract][Full Text] [Related]
48. Characterization of a photodiode coupled with a Si nanowire-FET on a plastic substrate. Kwak K; Cho K; Kim S Sensors (Basel); 2010; 10(10):9118-26. PubMed ID: 22163398 [TBL] [Abstract][Full Text] [Related]
49. Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection. Bao Z; Sun J; Zhao X; Li Z; Cui S; Meng Q; Zhang Y; Wang T; Jiang Y Int J Nanomedicine; 2017; 12():4623-4631. PubMed ID: 28721039 [TBL] [Abstract][Full Text] [Related]
50. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. Keem K; Jeong DY; Kim S; Lee MS; Yeo IS; Chung UI; Moon JT Nano Lett; 2006 Jul; 6(7):1454-8. PubMed ID: 16834428 [TBL] [Abstract][Full Text] [Related]
51. Reduction of random telegraph noise by high-pressure deuterium annealing for p-type omega-gate nanowire FET. Yang G; Kim D; Yang JW; Barraud S; Brevard L; Ghibaudo G; Lee JW Nanotechnology; 2020 Oct; 31(41):415201. PubMed ID: 32559755 [TBL] [Abstract][Full Text] [Related]
52. Control of channel doping concentration for enhancing the sensitivity of 'top-down' fabricated Si nanochannel FET biosensors. Park CW; Ahn CG; Yang JH; Baek IB; Ah CS; Kim A; Kim TY; Sung GY Nanotechnology; 2009 Nov; 20(47):475501. PubMed ID: 19858563 [TBL] [Abstract][Full Text] [Related]
53. Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface. Zafar S; D'Emic C; Afzali A; Fletcher B; Zhu Y; Ning T Nanotechnology; 2011 Oct; 22(40):405501. PubMed ID: 21911920 [TBL] [Abstract][Full Text] [Related]
54. Interface Passivation and Trap Reduction via a Solution-Based Method for Near-Zero Hysteresis Nanowire Field-Effect Transistors. Constantinou M; Stolojan V; Rajeev KP; Hinder S; Fisher B; Bogart TD; Korgel BA; Shkunov M ACS Appl Mater Interfaces; 2015 Oct; 7(40):22115-20. PubMed ID: 26402417 [TBL] [Abstract][Full Text] [Related]
55. Piezotronic and Piezo-Phototronic Effects-Enhanced Core-Shell Structure-Based Nanowire Field-Effect Transistors. Liu X; Li F; Peng W; Zhu Q; Li Y; Zheng G; Tian H; He Y Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512645 [TBL] [Abstract][Full Text] [Related]
56. Improved pH Sensitivity and Reliability for Extended Gate Field-Effect Transistor Sensors Using High- Kang JW; Cho WJ J Nanosci Nanotechnol; 2019 Mar; 19(3):1425-1431. PubMed ID: 30469200 [TBL] [Abstract][Full Text] [Related]
57. Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires. Wang B; Stelzner T; Dirawi R; Assad O; Shehada N; Christiansen S; Haick H ACS Appl Mater Interfaces; 2012 Aug; 4(8):4251-8. PubMed ID: 22817278 [TBL] [Abstract][Full Text] [Related]
58. Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. Li J; Zhang Y; To S; You L; Sun Y ACS Nano; 2011 Aug; 5(8):6661-8. PubMed ID: 21815637 [TBL] [Abstract][Full Text] [Related]
59. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Hu Y; Xiang J; Liang G; Yan H; Lieber CM Nano Lett; 2008 Mar; 8(3):925-30. PubMed ID: 18251518 [TBL] [Abstract][Full Text] [Related]
60. Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors. Roinila T; Yu X; Verho J; Li T; Kallio P; Vilkko M; Gao A; Wang Y Beilstein J Nanotechnol; 2014; 5():964-72. PubMed ID: 25161832 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]