These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29589128)

  • 61. Device Noise Reduction for Silicon Nanowire Field-Effect-Transistor Based Sensors by Using a Schottky Junction Gate.
    Chen X; Chen S; Hu Q; Zhang SL; Solomon P; Zhang Z
    ACS Sens; 2019 Feb; 4(2):427-433. PubMed ID: 30632733
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire.
    Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A facile route to Si nanowire gate-all-around field effect transistors with a steep subthreshold slope.
    Lee JH; Kim BS; Choi SH; Jang Y; Hwang SW; Whang D
    Nanoscale; 2013 Oct; 5(19):8968-72. PubMed ID: 23969942
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors.
    Duan X; Rajan NK; Izadi MH; Reed MA
    Nanomedicine (Lond); 2013 Nov; 8(11):1839-51. PubMed ID: 24156488
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Label-free SnO
    Jakob MH; Dong B; Gutsch S; Chatelle C; Krishnaraja A; Weber W; Zacharias M
    Nanotechnology; 2017 Jun; 28(24):245503. PubMed ID: 28452329
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.
    Barreda JL; Keiper TD; Zhang M; Xiong P
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effect of channel width on the performance of AlGaN/GaN nanowire field effect transistors.
    Kang MS; Lee JH; Lee HS; Koo SM
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7042-5. PubMed ID: 24245185
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Chemical and biological sensing applications based on graphene field-effect transistors.
    Ohno Y; Maehashi K; Matsumoto K
    Biosens Bioelectron; 2010 Dec; 26(4):1727-30. PubMed ID: 20800470
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection.
    Tsai CC; Chiang PL; Sun CJ; Lin TW; Tsai MH; Chang YC; Chen YT
    Nanotechnology; 2011 Apr; 22(13):135503. PubMed ID: 21343647
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.
    Nam S; Jiang X; Xiong Q; Ham D; Lieber CM
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21035-8. PubMed ID: 19940239
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors.
    Wu T; Alharbi A; You KD; Kisslinger K; Stach EA; Shahrjerdi D
    ACS Nano; 2017 Jul; 11(7):7142-7147. PubMed ID: 28636326
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors.
    Gao A; Lu N; Wang Y; Dai P; Li T; Gao X; Wang Y; Fan C
    Nano Lett; 2012 Oct; 12(10):5262-8. PubMed ID: 22985088
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Frequency domain detection of biomolecules using silicon nanowire biosensors.
    Zheng G; Gao XP; Lieber CM
    Nano Lett; 2010 Aug; 10(8):3179-83. PubMed ID: 20698634
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detection of ultra-low protein concentrations with the simplest possible field effect transistor.
    Georgiev YM; Petkov N; Yu R; Nightingale AM; Buitrago E; Lotty O; deMello JC; Ionescu A; Holmes JD
    Nanotechnology; 2019 Aug; 30(32):324001. PubMed ID: 30986779
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Scaling and Graphical Transport-Map Analysis of Ambipolar Schottky-Barrier Thin-Film Transistors Based on a Parallel Array of Si Nanowires.
    Jeon DY; Pregl S; Park SJ; Baraban L; Cuniberti G; Mikolajick T; Weber WM
    Nano Lett; 2015 Jul; 15(7):4578-84. PubMed ID: 26087437
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sub-kT/q switching in In
    Su M; Zou X; Gong Y; Wang J; Liu Y; Ho JC; Liu X; Liao L
    Nanoscale; 2018 Oct; 10(40):19131-19139. PubMed ID: 30298891
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Two-Channel Graphene pH Sensor Using Semi-Ionic Fluorinated Graphene Reference Electrode.
    Kim DH; Park WH; Oh HG; Jeon DC; Lim JM; Song KS
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731474
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Understanding and Mapping Sensitivity in MoS
    Noyce SG; Doherty JL; Zauscher S; Franklin AD
    ACS Nano; 2020 Sep; 14(9):11637-11647. PubMed ID: 32790325
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimized operation of silicon nanowire field effect transistor sensors.
    Rim T; Meyyappan M; Baek CK
    Nanotechnology; 2014 Dec; 25(50):505501. PubMed ID: 25422407
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors.
    Nguyen BM; Taur Y; Picraux ST; Dayeh SA
    Nano Lett; 2014 Feb; 14(2):585-91. PubMed ID: 24382113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.