BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 29589479)

  • 1. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy.
    Shamsi M; Sedaghatkish A; Dejam M; Saghafian M; Mohammadi M; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):846-861. PubMed ID: 29589479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule.
    Steuperaert M; Falvo D'Urso Labate G; Debbaut C; De Wever O; Vanhove C; Ceelen W; Segers P
    Drug Deliv; 2017 Nov; 24(1):491-501. PubMed ID: 28181817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical Modeling of Targeted Drug Delivery Using Magnetic Nanoparticles during Intraperitoneal Chemotherapy.
    Rezaeian M; Soltani M; Naseri Karimvand A; Raahemifar K
    Pharmaceutics; 2022 Jan; 14(2):. PubMed ID: 35214055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraperitoneal chemotherapy for peritoneal metastases: an expert opinion.
    Ceelen W; Braet H; van Ramshorst G; Willaert W; Remaut K
    Expert Opin Drug Deliv; 2020 Apr; 17(4):511-522. PubMed ID: 32142389
    [No Abstract]   [Full Text] [Related]  

  • 5. Pharmacokinetics and Tissue Transport of Intraperitoneal Chemotherapy.
    Lagast N; Carlier C; Ceelen WP
    Surg Oncol Clin N Am; 2018 Jul; 27(3):477-494. PubMed ID: 29935684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy.
    Steuperaert M; Debbaut C; Carlier C; De Wever O; Descamps B; Vanhove C; Ceelen W; Segers P
    Drug Deliv; 2019 Dec; 26(1):404-415. PubMed ID: 30929523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumour tissue transport after intraperitoneal anticancer drug delivery.
    Carlier C; Mathys A; De Jaeghere E; Steuperaert M; De Wever O; Ceelen W
    Int J Hyperthermia; 2017 Aug; 33(5):534-542. PubMed ID: 28540828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of an anti-vascular endothelial growth factor antibody in a pharmacokinetic strategy to increase the efficacy of intraperitoneal chemotherapy.
    Shah DK; Shin BS; Veith J; Tóth K; Bernacki RJ; Balthasar JP
    J Pharmacol Exp Ther; 2009 May; 329(2):580-91. PubMed ID: 19233938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Physicochemical Characteristics of Particle-Based Carriers for Intraperitoneal Local Chemotherapy.
    Alavi S; Haeri A; Mahlooji I; Dadashzadeh S
    Pharm Res; 2020 Jun; 37(6):119. PubMed ID: 32494940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An injectable depot system for sustained intraperitoneal chemotherapy of ovarian cancer results in favorable drug distribution at the whole body, peritoneal and intratumoral levels.
    Zahedi P; Stewart J; De Souza R; Piquette-Miller M; Allen C
    J Control Release; 2012 Mar; 158(3):379-85. PubMed ID: 22154933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating drug penetration during hyperthermic intraperitoneal chemotherapy.
    Löke DR; Helderman RFCPA; Franken NAP; Oei AL; Tanis PJ; Crezee J; Kok HP
    Drug Deliv; 2021 Dec; 28(1):145-161. PubMed ID: 33427507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy.
    Rezaeian M; Sedaghatkish A; Soltani M
    Drug Deliv; 2019 Dec; 26(1):898-917. PubMed ID: 31526065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review.
    Van de Sande L; Cosyns S; Willaert W; Ceelen W
    Drug Deliv; 2020 Dec; 27(1):40-53. PubMed ID: 31858848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraperitoneal aerosolized drug delivery: Technology, recent developments, and future outlook.
    Rahimi-Gorji M; Van de Sande L; Debbaut C; Ghorbaniasl G; Braet H; Cosyns S; Remaut K; Willaert W; Ceelen W
    Adv Drug Deliv Rev; 2020; 160():105-114. PubMed ID: 33132169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peritoneal Carcinomatosis Targeting with Tumor Homing Peptides.
    Simón-Gracia L; Hunt H; Teesalu T
    Molecules; 2018 May; 23(5):. PubMed ID: 29772690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale tumor spatiokinetic model for intraperitoneal therapy.
    Au JL; Guo P; Gao Y; Lu Z; Wientjes MG; Tsai M; Wientjes MG
    AAPS J; 2014 May; 16(3):424-39. PubMed ID: 24570339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer.
    Grifantini R; Taranta M; Gherardini L; Naldi I; Parri M; Grandi A; Giannetti A; Tombelli S; Lucarini G; Ricotti L; Campagnoli S; De Camilli E; Pelosi G; Baldini F; Menciassi A; Viale G; Pileri P; Cinti C
    J Control Release; 2018 Jun; 280():76-86. PubMed ID: 29733876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High intra-abdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental peritoneal carcinomatosis.
    Esquis P; Consolo D; Magnin G; Pointaire P; Moretto P; Ynsa MD; Beltramo JL; Drogoul C; Simonet M; Benoit L; Rat P; Chauffert B
    Ann Surg; 2006 Jul; 244(1):106-12. PubMed ID: 16794395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases.
    Li SD; Howell SB
    Mol Pharm; 2010 Feb; 7(1):280-90. PubMed ID: 19994852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors.
    Svenskaya Y; Garello F; Lengert E; Kozlova A; Verkhovskii R; Bitonto V; Ruggiero MR; German S; Gorin D; Terreno E
    Nanotheranostics; 2021; 5(3):362-377. PubMed ID: 33850694
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.