These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29589555)

  • 41. Resolving the structure of interactomes with hierarchical agglomerative clustering.
    Park Y; Bader JS
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S44. PubMed ID: 21342576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.
    Grzegorczyk M; Husmeier D
    Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterizing functional consequences of DNA copy number alterations in breast and ovarian tumors by spaceMap.
    Conley CJ; Ozbek U; Wang P; Peng J
    J Genet Genomics; 2018 Jul; 45(7):361-371. PubMed ID: 30057342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. H-CORE: enabling genome-scale Bayesian analysis of biological systems without prior knowledge.
    Jung S; Lee KH; Lee D
    Biosystems; 2007; 90(1):197-210. PubMed ID: 17005318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bayesian learning of multiple directed networks from observational data.
    Castelletti F; La Rocca L; Peluso S; Stingo FC; Consonni G
    Stat Med; 2020 Dec; 39(30):4745-4766. PubMed ID: 32969059
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.
    Fu C; Deng S; Jin G; Wang X; Yu ZG
    BMC Syst Biol; 2017 Sep; 11(Suppl 4):81. PubMed ID: 28950903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
    Zhou Y; Liu Y; Li K; Zhang R; Qiu F; Zhao N; Xu Y
    PLoS One; 2015; 10(3):e0116095. PubMed ID: 25803614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A categorical network approach for discovering differentially expressed regulations in cancer.
    Balov N
    BMC Med Genomics; 2013; 6 Suppl 3(Suppl 3):S1. PubMed ID: 24565081
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data.
    Gao S; Wang X
    BMC Bioinformatics; 2011 Aug; 12():359. PubMed ID: 21884587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploratory analysis of protein translation regulatory networks using hierarchical random graphs.
    Wu DD; Hu X; Park EK; Wang X; Feng J; Wu X
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S2. PubMed ID: 20438649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide DNA copy number profiling and bioinformatics analysis of ovarian cancer reveals key genes and pathways associated with distinct invasive/migratory capabilities.
    Liu G; Ruan G; Huang M; Chen L; Sun P
    Aging (Albany NY); 2020 Jan; 12(1):178-192. PubMed ID: 31895688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A scalable, knowledge-based analysis framework for genetic association studies.
    Baurley JW; Conti DV
    BMC Bioinformatics; 2013 Oct; 14():312. PubMed ID: 24152222
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data.
    Gogoshin G; Boerwinkle E; Rodin AS
    J Comput Biol; 2017 Apr; 24(4):340-356. PubMed ID: 27681505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.