These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29589560)

  • 1. Simulating variance heterogeneity in quantitative genome wide association studies.
    Al Kawam A; Alshawaqfeh M; Cai JJ; Serpedin E; Datta A
    BMC Bioinformatics; 2018 Mar; 19(Suppl 3):72. PubMed ID: 29589560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypic variability-based genome-wide association study identifies non-additive loci HLA-C and IL12B for psoriasis.
    Wei WH; Massey J; Worthington J; Barton A; Warren RB
    J Hum Genet; 2018 Mar; 63(3):289-296. PubMed ID: 29259305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating autosomal genotypes with realistic linkage disequilibrium and a spiked-in genetic effect.
    Shi M; Umbach DM; Wise AS; Weinberg CR
    BMC Bioinformatics; 2018 Jan; 19(1):2. PubMed ID: 29291710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic architecture affecting maize agronomic traits identified by variance heterogeneity association mapping.
    Zhang X; Qi Y
    Genomics; 2021 Jul; 113(4):1681-1688. PubMed ID: 33839267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint genotype- and ancestry-based genome-wide association studies in admixed populations.
    Szulc P; Bogdan M; Frommlet F; Tang H
    Genet Epidemiol; 2017 Sep; 41(6):555-566. PubMed ID: 28657151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of two statistical approaches for variance genome-wide association studies in plants.
    Murphy MD; Fernandes SB; Morota G; Lipka AE
    Heredity (Edinb); 2022 Aug; 129(2):93-102. PubMed ID: 35538221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis.
    Nelson RM; Pettersson ME; Li X; Carlborg Ö
    PLoS One; 2013; 8(11):e79507. PubMed ID: 24223957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the optimal scale for GWAS through hierarchical SNP aggregation.
    Guinot F; Szafranski M; Ambroise C; Samson F
    BMC Bioinformatics; 2018 Nov; 19(1):459. PubMed ID: 30497371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.
    Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X
    Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing a QTL detection study (GWAS) using genomic prediction methodology.
    Garrick DJ; Fernando RL
    Methods Mol Biol; 2013; 1019():275-98. PubMed ID: 23756895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden Markov models for controlling false discovery rate in genome-wide association analysis.
    Wei Z
    Methods Mol Biol; 2012; 802():337-44. PubMed ID: 22130891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Genomic Data to Find Disease-Modifying Loci in Huntington's Disease (HD).
    Holmans P; Stone T
    Methods Mol Biol; 2018; 1780():443-461. PubMed ID: 29856030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes.
    Shafquat A; Crystal RG; Mezey JG
    BMC Bioinformatics; 2020 May; 21(1):178. PubMed ID: 32381021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein-Friesian cattle.
    Veerkamp RF; Bouwman AC; Schrooten C; Calus MP
    Genet Sel Evol; 2016 Dec; 48(1):95. PubMed ID: 27905878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative methods for H1 simulations in genome-wide association studies.
    Perduca V; Sinoquet C; Mourad R; Nuel G
    Hum Hered; 2012; 73(2):95-104. PubMed ID: 22472690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population.
    Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB
    BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model to investigate SNPs' interaction in GWAS studies.
    Cocchi E; Drago A; Fabbri C; Serretti A
    J Neural Transm (Vienna); 2015 Jan; 122(1):145-53. PubMed ID: 25432432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of five novel genetic loci related to facial morphology by genome-wide association studies.
    Cha S; Lim JE; Park AY; Do JH; Lee SW; Shin C; Cho NH; Kang JO; Nam JM; Kim JS; Woo KM; Lee SH; Kim JY; Oh B
    BMC Genomics; 2018 Jun; 19(1):481. PubMed ID: 29921221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
    Zhang P; Lewinger JP; Conti D; Morrison JL; Gauderman WJ
    Genet Epidemiol; 2016 Jul; 40(5):394-403. PubMed ID: 27230133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.