These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29589610)

  • 1. Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex.
    Togashi T; Nakayama M; Hashimoto A; Ishizaki M; Kanaizuka K; Kurihara M
    Dalton Trans; 2018 Apr; 47(15):5342-5347. PubMed ID: 29589610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-tunable synthesis of iron oxide nanocrystals by continuous seed-mediated growth: role of alkylamine species in the stepwise thermal decomposition of iron(II) oxalate.
    Nozawa R; Naka T; Kurihara M; Togashi T
    Dalton Trans; 2021 Nov; 50(44):16021-16029. PubMed ID: 34613325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N,N-Diethyl-diaminopropane-copper(ii) oxalate self-reducible complex for the solution-based synthesis of copper nanocrystals.
    Togashi T; Nakayama M; Miyake R; Uruma K; Kanaizuka K; Kurihara M
    Dalton Trans; 2017 Sep; 46(37):12487-12493. PubMed ID: 28895601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.
    Kim NR; Lee YJ; Lee C; Koo J; Lee HM
    Nanotechnology; 2016 Aug; 27(34):345706. PubMed ID: 27454465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts.
    Yu Y; Yang W; Sun X; Zhu W; Li XZ; Sellmyer DJ; Sun S
    Nano Lett; 2014 May; 14(5):2778-82. PubMed ID: 24690033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors.
    Perez De Berti IO; Cagnoli MV; Pecchi G; Alessandrini JL; Stewart SJ; Bengoa JF; Marchetti SG
    Nanotechnology; 2013 May; 24(17):175601. PubMed ID: 23548801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine complexes.
    Itoh M; Kakuta T; Nagaok M; Koyama Y; Sakamoto M; Kawasaki S; Umeda N; Kurihara M
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6655-60. PubMed ID: 19908580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.
    Liang YJ; Zhang Y; Guo Z; Xie J; Bai T; Zou J; Gu N
    Chemistry; 2016 Aug; 22(33):11807-15. PubMed ID: 27381301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology Control in AgCu Nanoalloy Synthesis by Molecular Cu(I) Precursors.
    Vykoukal V; Halasta V; Babiak M; Bursik J; Pinkas J
    Inorg Chem; 2019 Nov; 58(22):15246-15254. PubMed ID: 31651156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks.
    Hokita Y; Kanzaki M; Sugiyama T; Arakawa R; Kawasaki H
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19382-9. PubMed ID: 26287811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals.
    Zhang HT; Chen XH
    Nanotechnology; 2005 Oct; 16(10):2288-94. PubMed ID: 20818009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications.
    Rastogi L; Arunachalam J
    Colloids Surf B Biointerfaces; 2013 Aug; 108():134-41. PubMed ID: 23531744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple process for the preparation of copper (I) oxide nanoparticles by a thermal decomposition process with borane tert-butylamine complex.
    Kim NR; Jung I; Jo YH; Lee HM
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6027-32. PubMed ID: 24205593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles at room temperature by green synthesized Cu NPs using Otostegia persica leaf extract.
    Nasrollahzadeh M; Sajadi SM; Mirzaei Y
    J Colloid Interface Sci; 2016 Apr; 468():156-162. PubMed ID: 26835585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of alpha-Fe nanoparticles by solventless thermal decomposition.
    Cha HG; Kim YH; Kim CW; Lee DK; Moon SD; Kwon HW; Kang YS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3412-6. PubMed ID: 17252778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the Binding Energy of the Surfactant to Iron Oxide Yields Truly Monodisperse Nanoparticles.
    Sharifi Dehsari H; Harris RA; Ribeiro AH; Tremel W; Asadi K
    Langmuir; 2018 Jun; 34(22):6582-6590. PubMed ID: 29726684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition.
    Wang D; Ma Q; Yang P
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6432-8. PubMed ID: 22962760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions.
    Diyarbakir S; Can H; Metin Ö
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3199-206. PubMed ID: 25594280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution.
    Jia G; Xu R; Mu X; Liu C
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13055-62. PubMed ID: 24283510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of monodisperse 5 nm Pd-Ni nanoalloys for electrocatalytic ethanol oxidation.
    Lee K; Kang SW; Lee SU; Park KH; Lee YW; Han SW
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4208-14. PubMed ID: 22799256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.