These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29589927)

  • 1. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems.
    Fujita T; Mochizuki Y
    J Phys Chem A; 2018 Apr; 122(15):3886-3898. PubMed ID: 29589927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.
    Herbert JM; Zhang X; Morrison AF; Liu J
    Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Implementation of the Frenkel-Davydov Exciton Model: A Naturally Parallelizable Approach to Computing Collective Excitations in Crystals and Aggregates.
    Morrison AF; You ZQ; Herbert JM
    J Chem Theory Comput; 2014 Dec; 10(12):5366-76. PubMed ID: 26583220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new fragment-based approach for calculating electronic excitation energies of large systems.
    Ma Y; Liu Y; Ma H
    J Chem Phys; 2012 Jan; 136(2):024113. PubMed ID: 22260570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superposition of Fragment Excitations for Excited States of Large Clusters with Application to Helium Clusters.
    Closser KD; Ge Q; Mao Y; Shao Y; Head-Gordon M
    J Chem Theory Comput; 2015 Dec; 11(12):5791-803. PubMed ID: 26609558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.
    Morrison AF; Herbert JM
    J Chem Phys; 2017 Jun; 146(22):224110. PubMed ID: 29166040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems.
    Nakata H; Fedorov DG; Yokojima S; Kitaura K; Sakurai M; Nakamura S
    J Chem Phys; 2014 Apr; 140(14):144101. PubMed ID: 24735282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio theory for treating local electron excitations in molecules and its performance for computing optical properties.
    Miura M; Aoki Y
    J Comput Chem; 2009 Nov; 30(14):2213-30. PubMed ID: 19266480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Configuration Interaction Picture for a Molecular Environment Using Localized Molecular Orbitals: The Excited States of Retinal Proteins.
    Hasegawa JY; Fujimoto KJ; Kawatsu T
    J Chem Theory Comput; 2012 Nov; 8(11):4452-61. PubMed ID: 26605605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment-Based Excited-State Calculations Using the GW Approximation and the Bethe-Salpeter Equation.
    Fujita T; Noguchi Y
    J Phys Chem A; 2021 Dec; 125(49):10580-10592. PubMed ID: 34871000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediate state representation approach to physical properties of electronically excited molecules.
    Schirmer J; Trofimov AB
    J Chem Phys; 2004 Jun; 120(24):11449-64. PubMed ID: 15268179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited states of large open-shell molecules: an efficient, general, and spin-adapted approach based on a restricted open-shell ground state wave function.
    Roemelt M; Neese F
    J Phys Chem A; 2013 Apr; 117(14):3069-83. PubMed ID: 23510206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT Calculations on Charge-Transfer States of a Carotenoid-Porphyrin-C60 Molecular Triad.
    Baruah T; Pederson MR
    J Chem Theory Comput; 2009 Apr; 5(4):834-43. PubMed ID: 26609590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct INDO/SCI method for excited state calculations.
    Tomlinson A; Yaron D
    J Comput Chem; 2003 Nov; 24(14):1782-8. PubMed ID: 12964197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Scaling Quantum Chemistry Approach to Excited-State Properties via an ab Initio Exciton Model: Application to Excitation Energy Transfer in a Self-Assembled Nanotube.
    Morrison AF; Herbert JM
    J Phys Chem Lett; 2015 Nov; 6(21):4390-6. PubMed ID: 26538050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway analysis of super-exchange electronic couplings in electron transfer reactions using a multi-configuration self-consistent field method.
    Nishioka H; Ando K
    Phys Chem Chem Phys; 2011 Apr; 13(15):7043-59. PubMed ID: 21390400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Implementation of Local Excitation Approximation for Treating Excited States of Molecules in Condensed Phase.
    Zhang C; Yuan D; Guo Y; Li S
    J Chem Theory Comput; 2014 Dec; 10(12):5308-17. PubMed ID: 26583214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab Initio Study of Charge Separation Dynamics and Pump-Probe Spectroscopy in the P3HT/PCBM Blend.
    Fujita T; Hoshi T
    J Phys Chem B; 2023 Sep; 127(35):7615-7623. PubMed ID: 37639551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.