These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29590)

  • 1. Utilization of D-amino acids by dadR mutants of Salmonella typhimurium.
    Wild J; Filutowicz M; Kłopotowski T
    Arch Microbiol; 1978 Jul; 118(1):71-7. PubMed ID: 29590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insensitivity of D-amino acid dehydrogenase synthesis to catabolic repression in dadR mutants of Salmonella typhimurium.
    Wild J; Kłopotowski T
    Mol Gen Genet; 1975; 136(1):63-73. PubMed ID: 16094967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
    He W; Li C; Lu CD
    J Bacteriol; 2011 May; 193(9):2107-15. PubMed ID: 21378189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-Amino acid dehydrogenase of Escherichia coli K12: positive selection of mutants defective in enzyme activity and localization of the structural gene.
    Wild J; Klopotowski T
    Mol Gen Genet; 1981; 181(3):373-8. PubMed ID: 6113535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of D-tryptophan oxidase in D-tryptophan utilization by Escherichia coli.
    Hadar R; Slonim A; Kuhn J
    J Bacteriol; 1976 Mar; 125(3):1096-1104. PubMed ID: 3493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-amino acid dehydrogenase: the enzyme of the first step of D-histidine and D-methionine racemization in Salmonella typhimurium.
    Wild J; Walczak W; Krajewska-Grynkiewicz K; Klopotowski T
    Mol Gen Genet; 1974; 128(2):131-46. PubMed ID: 4150767
    [No Abstract]   [Full Text] [Related]  

  • 7. Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system.
    Ayling PD; Mojica-a T; Klopotowski T
    J Gen Microbiol; 1979 Oct; 114(2):227-46. PubMed ID: 396352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant strains of Escherichia coli K12 that use D-amino acids.
    Kuhn J; Somerville RL
    Proc Natl Acad Sci U S A; 1971 Oct; 68(10):2484-7. PubMed ID: 4400212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-histidine utilization in Salmonella typhimurium is controlled by the leucine-responsive regulatory protein (Lrp).
    Hecht K; Zhang S; Klopotowski T; Ames GF
    J Bacteriol; 1996 Jan; 178(2):327-31. PubMed ID: 8550449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal by aromatic amino acids of 2-thiazole-DL-alanine inhibition of Salmonella typhimurium.
    Bahramian MB; Middleton RB
    J Bacteriol; 1973 Jan; 113(1):504-7. PubMed ID: 4569697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct types of mutations conferring to Escherichia coli K12 capability of D-tryptophan utilization.
    Wild J; Zakrzewska B; Walczak W; Kłopotowski T
    Acta Microbiol Pol; 1987; 36(1-2):17-28. PubMed ID: 2442969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations affecting aromatic amino acid transport in Escherichia coli and Salmonella typhimurium.
    Thorne GM; Corwin LM
    J Gen Microbiol; 1975 Oct; 90(2):203-16. PubMed ID: 1104763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Utilization of D-histidine by the derivative strain TA100 of Salmonella typhimurium LT 2].
    Ohtsuka M; Morinaga N; Okada M
    Nihon Saikingaku Zasshi; 1991 Nov; 46(6):929-31. PubMed ID: 1805044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution.
    Sacchi S; Rosini E; Molla G; Pilone MS; Pollegioni L
    Protein Eng Des Sel; 2004 Jun; 17(6):517-25. PubMed ID: 15310841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation.
    Newell SL; Brill WJ
    J Bacteriol; 1972 Aug; 111(2):375-82. PubMed ID: 4559730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basis of transport discrimination of arginine from other basic amino acids in Salmonella typhimurium.
    Quay S; Christensen HN
    J Biol Chem; 1974 Nov; 249(21):7011-7. PubMed ID: 4609082
    [No Abstract]   [Full Text] [Related]  

  • 17. Salmonella typhimurium LT-2 mutants with altered glutamine synthetase levels and amino acid uptake activities.
    Funanage VL; Ayling PD; Dendinger SM; Brenchley JE
    J Bacteriol; 1978 Nov; 136(2):588-96. PubMed ID: 30754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine and glutamine transport systems in D-methionine utilising revertants of Salmonella typhimurium.
    Poland J; Ayling PD
    Mol Gen Genet; 1984; 194(1-2):219-26. PubMed ID: 6374377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonism in the simultaneous oxidation of D-amino acids by D-amino acid oxidase.
    LaRue TA; Gerulat BF; Berg CP
    Arch Biochem Biophys; 1967 Jul; 121(1):22-8. PubMed ID: 4382394
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.