These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 29590605)
1. Matrix Production and Sporulation in Bacillus subtilis Biofilms Localize to Propagating Wave Fronts. Srinivasan S; Vladescu ID; Koehler SA; Wang X; Mani M; Rubinstein SM Biophys J; 2018 Mar; 114(6):1490-1498. PubMed ID: 29590605 [TBL] [Abstract][Full Text] [Related]
2. Control of cell fate by the formation of an architecturally complex bacterial community. Vlamakis H; Aguilar C; Losick R; Kolter R Genes Dev; 2008 Apr; 22(7):945-53. PubMed ID: 18381896 [TBL] [Abstract][Full Text] [Related]
3. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Hamon MA; Lazazzera BA Mol Microbiol; 2001 Dec; 42(5):1199-209. PubMed ID: 11886552 [TBL] [Abstract][Full Text] [Related]
4. Defining the Expression, Production, and Signaling Roles of Specialized Metabolites during Bacillus subtilis Differentiation. Schoenborn AA; Yannarell SM; Wallace ED; Clapper H; Weinstein IC; Shank EA J Bacteriol; 2021 Oct; 203(22):e0033721. PubMed ID: 34460312 [TBL] [Abstract][Full Text] [Related]
5. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. Veening JW; Kuipers OP; Brul S; Hellingwerf KJ; Kort R J Bacteriol; 2006 Apr; 188(8):3099-109. PubMed ID: 16585769 [TBL] [Abstract][Full Text] [Related]
6. Stochastic pulsing of gene expression enables the generation of spatial patterns in Bacillus subtilis biofilms. Nadezhdin E; Murphy N; Dalchau N; Phillips A; Locke JCW Nat Commun; 2020 Feb; 11(1):950. PubMed ID: 32075967 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens. Powers MJ; Sanabria-Valentín E; Bowers AA; Shank EA J Bacteriol; 2015 Jul; 197(13):2129-2138. PubMed ID: 25825426 [TBL] [Abstract][Full Text] [Related]
8. The impact of manganese on biofilm development of Bacillus subtilis. Mhatre E; Troszok A; Gallegos-Monterrosa R; Lindstädt S; Hölscher T; Kuipers OP; Kovács ÁT Microbiology (Reading); 2016 Aug; 162(8):1468-1478. PubMed ID: 27267987 [TBL] [Abstract][Full Text] [Related]
9. Biofilm Formation Drives Transfer of the Conjugative Element ICE Lécuyer F; Bourassa JS; Gélinas M; Charron-Lamoureux V; Burrus V; Beauregard PB mSphere; 2018 Sep; 3(5):. PubMed ID: 30258041 [TBL] [Abstract][Full Text] [Related]
10. Spore formation in Bacillus subtilis biofilms. Lindsay D; Brözel VS; von Holy A J Food Prot; 2005 Apr; 68(4):860-5. PubMed ID: 15830685 [TBL] [Abstract][Full Text] [Related]
11. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Ren D; Bedzyk LA; Setlow P; Thomas SM; Ye RW; Wood TK Biotechnol Bioeng; 2004 May; 86(3):344-64. PubMed ID: 15083514 [TBL] [Abstract][Full Text] [Related]
12. Cannibalism enhances biofilm development in Bacillus subtilis. López D; Vlamakis H; Losick R; Kolter R Mol Microbiol; 2009 Nov; 74(3):609-18. PubMed ID: 19775247 [TBL] [Abstract][Full Text] [Related]
13. Biofilm Dispersal for Spore Release in Bacillus subtilis. Kovács ÁT; Stanley-Wall NR J Bacteriol; 2021 Jun; 203(14):e0019221. PubMed ID: 33927051 [TBL] [Abstract][Full Text] [Related]
14. Dependence of the Bacillus subtilis biofilm expansion rate on phenotypes and the morphology under different growing conditions. Wang X; Kong Y; Zhao H; Yan X Dev Growth Differ; 2019 Sep; 61(7-8):431-443. PubMed ID: 31565797 [TBL] [Abstract][Full Text] [Related]
15. Histological approach to Bacillus subtilis colony-biofilm: evolving internal architecture and sporulation dynamics. Gómez-Aguado F; Corcuera MT; Gómez-Lus ML; de la Parte MA; Ramos C; García-Rey C; Alonso MJ; Prieto J Histol Histopathol; 2013 Oct; 28(10):1351-60. PubMed ID: 23645570 [TBL] [Abstract][Full Text] [Related]
16. Production and analysis of a Bacillus subtilis biofilm comprised of vegetative cells and spores using a modified colony biofilm model. Wahlen LK; Mantei JR; DiOrio JP; Jones CM; Pasmore ME J Microbiol Methods; 2018 May; 148():181-187. PubMed ID: 29673789 [TBL] [Abstract][Full Text] [Related]
17. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. Veening JW; Smits WK; Hamoen LW; Kuipers OP J Appl Microbiol; 2006 Sep; 101(3):531-41. PubMed ID: 16907804 [TBL] [Abstract][Full Text] [Related]
18. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review. Sadiq FA; Flint S; Li Y; Liu T; Lei Y; Sakandar HA; He G Biofouling; 2017 Apr; 33(4):306-326. PubMed ID: 28347177 [TBL] [Abstract][Full Text] [Related]
19. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Dubnau EJ; Carabetta VJ; Tanner AW; Miras M; Diethmaier C; Dubnau D Mol Microbiol; 2016 Aug; 101(4):606-24. PubMed ID: 27501195 [TBL] [Abstract][Full Text] [Related]
20. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis. Leiman SA; Arboleda LC; Spina JS; McLoon AL BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]