BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 29590619)

  • 1. Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism.
    Gao X; Lee K; Reid MA; Sanderson SM; Qiu C; Li S; Liu J; Locasale JW
    Cell Rep; 2018 Mar; 22(13):3507-3520. PubMed ID: 29590619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Lipid biology in the periparturient dairy cow: contemporary perspectives.
    McFadden JW
    Animal; 2020 Mar; 14(S1):s165-s175. PubMed ID: 32024571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serine restriction alters sphingolipid diversity to constrain tumour growth.
    Muthusamy T; Cordes T; Handzlik MK; You L; Lim EW; Gengatharan J; Pinto AFM; Badur MG; Kolar MJ; Wallace M; Saghatelian A; Metallo CM
    Nature; 2020 Oct; 586(7831):790-795. PubMed ID: 32788725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells.
    Long B; Muhamad R; Yan G; Yu J; Fan Q; Wang Z; Li X; Purnomoadi A; Achmadi J; Yan X
    Amino Acids; 2016 May; 48(5):1297-307. PubMed ID: 26837383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics.
    Rambold AS; Cohen S; Lippincott-Schwartz J
    Dev Cell; 2015 Mar; 32(6):678-92. PubMed ID: 25752962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.
    Jiang L; Shestov AA; Swain P; Yang C; Parker SJ; Wang QA; Terada LS; Adams ND; McCabe MT; Pietrak B; Schmidt S; Metallo CM; Dranka BP; Schwartz B; DeBerardinis RJ
    Nature; 2016 Apr; 532(7598):255-8. PubMed ID: 27049945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of SIRT1 by L-serine increases fatty acid oxidation and reverses insulin resistance in C2C12 myotubes.
    Sim WC; Kim DG; Lee W; Sim H; Choi YJ; Lee BH
    Cell Biol Toxicol; 2019 Oct; 35(5):457-470. PubMed ID: 30721374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism.
    Turner N; Lim XY; Toop HD; Osborne B; Brandon AE; Taylor EN; Fiveash CE; Govindaraju H; Teo JD; McEwen HP; Couttas TA; Butler SM; Das A; Kowalski GM; Bruce CR; Hoehn KL; Fath T; Schmitz-Peiffer C; Cooney GJ; Montgomery MK; Morris JC; Don AS
    Nat Commun; 2018 Aug; 9(1):3165. PubMed ID: 30131496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats.
    Bonen A; Jain SS; Snook LA; Han XX; Yoshida Y; Buddo KH; Lally JS; Pask ED; Paglialunga S; Beaudoin MS; Glatz JF; Luiken JJ; Harasim E; Wright DC; Chabowski A; Holloway GP
    Diabetologia; 2015 Oct; 58(10):2381-91. PubMed ID: 26197708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain.
    Tu J; Yin Y; Xu M; Wang R; Zhu ZJ
    Metabolomics; 2017 Nov; 14(1):5. PubMed ID: 30830317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceramides and mitochondrial fatty acid oxidation in obesity.
    Fucho R; Casals N; Serra D; Herrero L
    FASEB J; 2017 Apr; 31(4):1263-1272. PubMed ID: 28003342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1.
    Vilaça R; Barros I; Matmati N; Silva E; Martins T; Teixeira V; Hannun YA; Costa V
    Biochim Biophys Acta Mol Basis Dis; 2018 Jan; 1864(1):79-88. PubMed ID: 28988886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men.
    Ribel-Madsen A; Ribel-Madsen R; Brøns C; Newgard CB; Vaag AA; Hellgren LI
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27694528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth.
    Polet F; Corbet C; Pinto A; Rubio LI; Martherus R; Bol V; Drozak X; Grégoire V; Riant O; Feron O
    Oncotarget; 2016 Jan; 7(2):1765-76. PubMed ID: 26625201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis.
    Griss T; Vincent EE; Egnatchik R; Chen J; Ma EH; Faubert B; Viollet B; DeBerardinis RJ; Jones RG
    PLoS Biol; 2015 Dec; 13(12):e1002309. PubMed ID: 26625127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers.
    Kremer JC; Prudner BC; Lange SES; Bean GR; Schultze MB; Brashears CB; Radyk MD; Redlich N; Tzeng SC; Kami K; Shelton L; Li A; Morgan Z; Bomalaski JS; Tsukamoto T; McConathy J; Michel LS; Held JM; Van Tine BA
    Cell Rep; 2017 Jan; 18(4):991-1004. PubMed ID: 28122247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation.
    Corbet C; Pinto A; Martherus R; Santiago de Jesus JP; Polet F; Feron O
    Cell Metab; 2016 Aug; 24(2):311-23. PubMed ID: 27508876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLUH couples mitochondrial distribution to the energetic and metabolic status.
    Wakim J; Goudenege D; Perrot R; Gueguen N; Desquiret-Dumas V; Chao de la Barca JM; Dalla Rosa I; Manero F; Le Mao M; Chupin S; Chevrollier A; Procaccio V; Bonneau D; Logan DC; Reynier P; Lenaers G; Khiati S
    J Cell Sci; 2017 Jun; 130(11):1940-1951. PubMed ID: 28424233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic targets during mitochondrial lipid metabolism.
    Wang W; Li L; Wang X
    Cell Biol Toxicol; 2020 Jun; 36(3):205-208. PubMed ID: 32548662
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.