These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2959262)

  • 1. High energy phosphate of the myocardium: concentration versus free energy change.
    Kammermeier H
    Basic Res Cardiol; 1987; 82 Suppl 2():31-6. PubMed ID: 2959262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy levels at systole vs. diastole in normal hamster hearts vs. myopathic hamster hearts.
    Sievers R; Parmley WW; James T; Wikman-Coffelt J
    Circ Res; 1983 Dec; 53(6):759-66. PubMed ID: 6640862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics studies of muscles of different types.
    Kushmerick MJ
    Basic Res Cardiol; 1987; 82 Suppl 2():17-30. PubMed ID: 3663016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preserved high energy phosphate metabolic reserve in globally "stunned" hearts despite reduction of basal ATP content and contractility.
    Ambrosio G; Jacobus WE; Bergman CA; Weisman HF; Becker LC
    J Mol Cell Cardiol; 1987 Oct; 19(10):953-64. PubMed ID: 3437454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of early "pump" failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation.
    Kübler W; Katz AM
    Am J Cardiol; 1977 Sep; 40(3):467-71. PubMed ID: 900046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP.
    Jacobus WE
    Biochem Biophys Res Commun; 1985 Dec; 133(3):1035-41. PubMed ID: 4084301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure.
    Rauch U; Schulze K; Witzenbichler B; Schultheiss HP
    Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-catalytic roles of ATP in muscle metabolism and in its control.
    Berman MC
    J Mol Cell Cardiol; 1984 Mar; 16(3):191-4. PubMed ID: 6143830
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy metabolism response to calcium activation in isolated rat hearts during development and regression of T3-induced hypertrophy.
    Lortet S; Heckmann M; Ray A; Rossi A; Aussedat J; Grably S; Zimmer HG
    Mol Cell Biochem; 1995 Oct; 151(2):99-106. PubMed ID: 8569765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells.
    McClellan G; Weisberg A; Winegrad S
    Am J Physiol; 1983 Nov; 245(5 Pt 1):C423-7. PubMed ID: 6638167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meaning of energetic parameters.
    Kammermeier H
    Basic Res Cardiol; 1993; 88(5):380-4. PubMed ID: 8117244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca(2+)-ATPase.
    Korge P; Byrd SK; Campbell KB
    Eur J Biochem; 1993 May; 213(3):973-80. PubMed ID: 8504836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.
    Neubauer S; Ingwall JS
    J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI; Wei JY; Ingwall JS
    J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of anoxia on energy supply and isotonic work performance in the myocardium of the frog].
    Günther J; Oddoy A; Schubert E
    Acta Biol Med Ger; 1976; 35(11):1533-40. PubMed ID: 1022137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature and coronary flow on the metabolic and mechanical function of the isolated rat heart.
    Blum H; Ivanics T; Zhang D; Wroblewski K; Osbakken MD
    Cardiology; 1993; 82(4):238-48. PubMed ID: 8402750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytoplasmic free energy of ATP hydrolysis in isolated rod-shaped rat ventricular myocytes.
    ter Welle HF; Baartscheer A; Fiolet JW; Schumacher CA
    J Mol Cell Cardiol; 1988 May; 20(5):435-41. PubMed ID: 3210251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Mg2+ on cardiac performance, intracellular free Mg2+ and pH in perfused hearts as assessed with 31P nuclear magnetic resonance spectroscopy.
    Barbour RL; Altura BM; Reiner SD; Dowd TL; Gupta RK; Wu F; Altura BT
    Magnes Trace Elem; 1991-1992; 10(2-4):99-116. PubMed ID: 1844566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.
    Ben Cheikh R; Guendouz A; Moravec J
    Am J Physiol; 1994 May; 266(5 Pt 2):H2090-7. PubMed ID: 8203607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.