BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29592900)

  • 1. Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors.
    Singh B; Trincado JL; Tatlow PJ; Piccolo SR; Eyras E
    Mol Cancer Res; 2018 Jul; 16(7):1112-1124. PubMed ID: 29592900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational landscape of RNA-binding proteins in human cancers.
    Neelamraju Y; Gonzalez-Perez A; Bhat-Nakshatri P; Nakshatri H; Janga SC
    RNA Biol; 2018 Jan; 15(1):115-129. PubMed ID: 29023197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Genetic Screen for Pre-mRNA Splicing Mutants of
    Kanno T; Lin WD; Fu JL; Chang CL; Matzke AJM; Matzke M
    Genetics; 2017 Dec; 207(4):1347-1359. PubMed ID: 28971960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of cancer mutational signatures on transcription factor motifs in the human genome.
    Yiu Chan CW; Gu Z; Bieg M; Eils R; Herrmann C
    BMC Med Genomics; 2019 May; 12(1):64. PubMed ID: 31109337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis RNA-seq and Noncoding RNA.
    Arrigoni A; Ranzani V; Rossetti G; Panzeri I; Abrignani S; Bonnal RJ; Pagani M
    Methods Mol Biol; 2016; 1480():125-35. PubMed ID: 27659980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.
    Xia H; Chen D; Wu Q; Wu G; Zhou Y; Zhang Y; Zhang L
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):911-921. PubMed ID: 28733224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the exome: the role of non-coding somatic mutations in cancer.
    Piraino SW; Furney SJ
    Ann Oncol; 2016 Feb; 27(2):240-8. PubMed ID: 26598542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of somatic mutations in splicing-associated sequences in cancer genomes.
    Hurst LD; Batada NN
    Genome Biol; 2017 Nov; 18(1):213. PubMed ID: 29115978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combinatorial control of alternative splicing in C. elegans.
    Tan JH; Fraser AG
    PLoS Genet; 2017 Nov; 13(11):e1007033. PubMed ID: 29121637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix-screening reveals a vast potential for direct protein-protein interactions among RNA binding proteins.
    Lang B; Yang JS; Garriga-Canut M; Speroni S; Aschern M; Gili M; Hoffmann T; Tartaglia GG; Maurer SP
    Nucleic Acids Res; 2021 Jul; 49(12):6702-6721. PubMed ID: 34133714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative Analysis of Somatic Mutations in Non-coding Regions Altering RNA Secondary Structures in Cancer Genomes.
    He F; Wei R; Zhou Z; Huang L; Wang Y; Tang J; Zou Y; Shi L; Gu X; Davis MJ; Su Z
    Sci Rep; 2019 Jun; 9(1):8205. PubMed ID: 31160636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and analysis of splicing quantitative trait loci across multiple tissues in the human genome.
    Garrido-Martín D; Borsari B; Calvo M; Reverter F; Guigó R
    Nat Commun; 2021 Feb; 12(1):727. PubMed ID: 33526779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
    Shkreta L; Bell B; Revil T; Venables JP; Prinos P; Elela SA; Chabot B
    Cancer Treat Res; 2013; 158():41-94. PubMed ID: 24222354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks.
    Sebestyén E; Singh B; Miñana B; Pagès A; Mateo F; Pujana MA; Valcárcel J; Eyras E
    Genome Res; 2016 Jun; 26(6):732-44. PubMed ID: 27197215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalent RNA recognition motif duplication in the human genome.
    Tsai YS; Gomez SM; Wang Z
    RNA; 2014 May; 20(5):702-12. PubMed ID: 24667216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging cross-link modification events in CLIP-seq for motif discovery.
    Bahrami-Samani E; Penalva LO; Smith AD; Uren PJ
    Nucleic Acids Res; 2015 Jan; 43(1):95-103. PubMed ID: 25505146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.