BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 29593092)

  • 21. Solution structure of the TatB component of the twin-arginine translocation system.
    Zhang Y; Wang L; Hu Y; Jin C
    Biochim Biophys Acta; 2014 Jul; 1838(7):1881-8. PubMed ID: 24699374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system.
    Tarry MJ; Schäfer E; Chen S; Buchanan G; Greene NP; Lea SM; Palmer T; Saibil HR; Berks BC
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13284-9. PubMed ID: 19666509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli.
    Orriss GL; Tarry MJ; Ize B; Sargent F; Lea SM; Palmer T; Berks BC
    FEBS Lett; 2007 Aug; 581(21):4091-7. PubMed ID: 17686475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone.
    Buchanan G; Maillard J; Nabuurs SB; Richardson DJ; Palmer T; Sargent F
    FEBS Lett; 2008 Dec; 582(29):3979-84. PubMed ID: 19013157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes.
    Jones AS; Austerberry JI; Dajani R; Warwicker J; Curtis R; Derrick JP; Robinson C
    Biochim Biophys Acta; 2016 Dec; 1863(12):3116-3124. PubMed ID: 27619192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Twin-arginine-dependent translocation of folded proteins.
    Fröbel J; Rose P; Müller M
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes.
    de Leeuw E; Granjon T; Porcelli I; Alami M; Carr SB; Müller M; Sargent F; Palmer T; Berks BC
    J Mol Biol; 2002 Oct; 322(5):1135-46. PubMed ID: 12367533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities.
    Kreutzenbeck P; Kröger C; Lausberg F; Blaudeck N; Sprenger GA; Freudl R
    J Biol Chem; 2007 Mar; 282(11):7903-11. PubMed ID: 17229735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport.
    Hicks MG; de Leeuw E; Porcelli I; Buchanan G; Berks BC; Palmer T
    FEBS Lett; 2003 Mar; 539(1-3):61-7. PubMed ID: 12650927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Twin-arginine translocation-arresting protein regions contact TatA and TatB.
    Taubert J; Brüser T
    Biol Chem; 2014 Jul; 395(7-8):827-36. PubMed ID: 25003386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway.
    Pérez-Rodríguez R; Fisher AC; Perlmutter JD; Hicks MG; Chanal A; Santini CL; Wu LF; Palmer T; DeLisa MP
    J Mol Biol; 2007 Mar; 367(3):715-30. PubMed ID: 17280684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a pre-export enzyme-chaperone complex on the twin-arginine transport pathway.
    Dow JM; Gabel F; Sargent F; Palmer T
    Biochem J; 2013 May; 452(1):57-66. PubMed ID: 23452237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The TatBC complex of the Tat protein translocase in Escherichia coli and its transition to the substrate-bound TatABC complex.
    Behrendt J; Brüser T
    Biochemistry; 2014 Apr; 53(14):2344-54. PubMed ID: 24654648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency.
    Taubert J; Hou B; Risselada HJ; Mehner D; Lünsdorf H; Grubmüller H; Brüser T
    PLoS One; 2015; 10(3):e0119761. PubMed ID: 25774531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The TatC component of the twin-arginine protein translocase functions as an obligate oligomer.
    Cléon F; Habersetzer J; Alcock F; Kneuper H; Stansfeld PJ; Basit H; Wallace MI; Berks BC; Palmer T
    Mol Microbiol; 2015 Oct; 98(1):111-29. PubMed ID: 26112072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Bacillus subtilis TatAdCd system exhibits an extreme level of substrate selectivity.
    Frain KM; Jones AS; Schoner R; Walker KL; Robinson C
    Biochim Biophys Acta Mol Cell Res; 2017 Jan; 1864(1):202-208. PubMed ID: 27984091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting of unfolded PhoA to the TAT translocon of Escherichia coli.
    Richter S; Brüser T
    J Biol Chem; 2005 Dec; 280(52):42723-30. PubMed ID: 16263723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The TatBC complex formation suppresses a modular TatB-multimerization in Escherichia coli.
    Behrendt J; Lindenstrauss U; Brüser T
    FEBS Lett; 2007 Aug; 581(21):4085-90. PubMed ID: 17678896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones.
    Kuzniatsova L; Winstone TM; Turner RJ
    Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase.
    Hatzixanthis K; Palmer T; Sargent F
    Mol Microbiol; 2003 Sep; 49(5):1377-90. PubMed ID: 12940994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.