These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2959322)

  • 1. Fibrinogen-induced erythrocyte aggregation: erythrocyte-binding site in the fibrinogen molecule.
    Maeda N; Seike M; Kume S; Takaku T; Shiga T
    Biochim Biophys Acta; 1987 Nov; 904(1):81-91. PubMed ID: 2959322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of fibrin polymerization by fragment d is affected by calcium, Gly-Pro-Arg and Gly-His-Arg.
    Furlan M; Rupp C; Beck EA
    Biochim Biophys Acta; 1983 Jan; 742(1):25-32. PubMed ID: 6824684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Action of proteolytic enzymes on fibrinogen].
    Jamet M; Levy G
    Ann Anesthesiol Fr; 1978; 19(8):687-91. PubMed ID: 31111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological characteristics of desialylated erythrocytes in relation to fibrinogen-induced aggregation.
    Maeda N; Imaizumi K; Sekiya M; Shiga T
    Biochim Biophys Acta; 1984 Sep; 776(1):151-8. PubMed ID: 6477901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of fibrinogen biosynthesis: effect of fibrin degradation products, low-molecular-weight peptides of fibrinogenolysis, and fibrinopeptides A and B.
    Kessler CM; Bell WR
    J Lab Clin Med; 1979 May; 93(5):758-67. PubMed ID: 429874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of forms of fragment E with differing thrombin-binding properties during digestion of fibrinogen by plasmin.
    Goodwin CA; Kakkar VV; Scully MF
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):613-8. PubMed ID: 1531588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of glycoproteins to fibrinogen-induced aggregation of erythrocytes.
    Maeda N; Seike M; Nakajima T; Izumida Y; Sekiya M; Shiga T
    Biochim Biophys Acta; 1990 Feb; 1022(1):72-8. PubMed ID: 2302404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte aggregation: bridging by macromolecules and electrostatic repulsion by sialic acid.
    Izumida Y; Seiyama A; Maeda N
    Biochim Biophys Acta; 1991 Aug; 1067(2):221-6. PubMed ID: 1652285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrinogen and platelet aggregation. Role of the glycopeptidic part and of the fibrinopeptide B. Description of a new technique of fibrinoglycopeptide isolation.
    Soria J; Soria C; Bertrand O; Samama M
    Biochem Biophys Res Commun; 1978 May; 82(2):442-50. PubMed ID: 666853
    [No Abstract]   [Full Text] [Related]  

  • 10. Fibrinogen Barcelona I. Congenital dysfibrinogenemia characterized by defective release of fibrinopeptide A and fibrinogen degradation products.
    Vila V; Regañón E; Aznar J; Navarro G; Salas M
    Thromb Res; 1987 Mar; 45(5):437-49. PubMed ID: 2954261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite effect of albumin on the erythrocyte aggregation induced by immunoglobulin G and fibrinogen.
    Maeda N; Shiga T
    Biochim Biophys Acta; 1986 Feb; 855(1):127-35. PubMed ID: 3942735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of structures of various human fibrinogens and a derivative thereof by a study of the kinetics of release of fibrinopeptides.
    Hanna LS; Scheraga HA; Francis CW; Marder VJ
    Biochemistry; 1984 Sep; 23(20):4681-7. PubMed ID: 6238619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Roles of plasma proteins and surface negative charge of erythrocytes in erythrocyte aggregation].
    Izumida Y
    Nihon Seirigaku Zasshi; 1991; 53(1):1-12. PubMed ID: 2023137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accelerating effect of fibrinogen and early fibrinogen degradation products on erythrocyte sedimentation.
    Marsh NA
    Thromb Haemost; 1979 Aug; 42(2):757-63. PubMed ID: 505378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticoagulant and calcium-binding properties of high molecular weight derivatives of human fibrinogen (plasmin fragments Y).
    Nieuwenhuizen W; Voskuilen M; Hermans J
    Biochim Biophys Acta; 1982 Nov; 708(3):313-6. PubMed ID: 6216917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition and acceleration of erythrocyte aggregation induced by small macromolecules.
    Maeda N; Shiga T
    Biochim Biophys Acta; 1985 Nov; 843(1-2):128-36. PubMed ID: 2415164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of immunoglobulin preparations on the aggregation of human erythrocytes.
    Maeda N; Sekiya M; Kameda K; Shiga T
    Eur J Clin Invest; 1986 Apr; 16(2):184-91. PubMed ID: 2426117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fibrinopeptide cleavage on the plasmic degradation pathways of human cross-linked fibrin.
    Olexa SA; Budzynski AZ
    Biochemistry; 1980 Feb; 19(4):647-51. PubMed ID: 6444516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of the inhibitory effect of fibrinogen and its degradation products on fibrin polymerization.
    Belitser VA; Lugovskoy EV; Musjalkovskaja AA; Gogolinskaja GK
    Thromb Res; 1982 Aug; 27(3):261-9. PubMed ID: 6291191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are there two functionally distinguished Neu5Gc pools with respect to rouleau formation on the bovine red blood cell?
    Musielak M
    Clin Hemorheol Microcirc; 2004; 30(3-4):435-8. PubMed ID: 15258381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.