These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29594181)
1. Predicting malignant nodules by fusing deep features with classical radiomics features. Paul R; Hawkins SH; Schabath MB; Gillies RJ; Hall LO; Goldgof DB J Med Imaging (Bellingham); 2018 Jan; 5(1):011021. PubMed ID: 29594181 [TBL] [Abstract][Full Text] [Related]
2. Predicting Nodule Malignancy using a CNN Ensemble Approach. Paul R; Hall L; Goldgof D; Schabath M; Gillies R Proc Int Jt Conf Neural Netw; 2018 Jul; 2018():. PubMed ID: 30443438 [TBL] [Abstract][Full Text] [Related]
3. Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma. Paul R; Hawkins SH; Balagurunathan Y; Schabath MB; Gillies RJ; Hall LO; Goldgof DB Tomography; 2016 Dec; 2(4):388-395. PubMed ID: 28066809 [TBL] [Abstract][Full Text] [Related]
4. Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics. Huynh BN; Groendahl AR; Tomic O; Liland KH; Knudtsen IS; Hoebers F; van Elmpt W; Malinen E; Dale E; Futsaether CM Front Med (Lausanne); 2023; 10():1217037. PubMed ID: 37711738 [TBL] [Abstract][Full Text] [Related]
5. Convolutional Neural Network ensembles for accurate lung nodule malignancy prediction 2 years in the future. Paul R; Schabath M; Gillies R; Hall L; Goldgof D Comput Biol Med; 2020 Jul; 122():103882. PubMed ID: 32658721 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552 [TBL] [Abstract][Full Text] [Related]
7. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Huynh BQ; Li H; Giger ML J Med Imaging (Bellingham); 2016 Jul; 3(3):034501. PubMed ID: 27610399 [TBL] [Abstract][Full Text] [Related]
8. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. Huang B; Sollee J; Luo YH; Reddy A; Zhong Z; Wu J; Mammarappallil J; Healey T; Cheng G; Azzoli C; Korogodsky D; Zhang P; Feng X; Li J; Yang L; Jiao Z; Bai HX EBioMedicine; 2022 Aug; 82():104127. PubMed ID: 35810561 [TBL] [Abstract][Full Text] [Related]
9. Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model. Gong J; Wang T; Wang Z; Chu X; Hu T; Li M; Peng W; Feng F; Tong T; Gu Y Cancer Imaging; 2024 Jan; 24(1):1. PubMed ID: 38167564 [TBL] [Abstract][Full Text] [Related]
10. Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma. Zhang B; Qi S; Pan X; Li C; Yao Y; Qian W; Guan Y Front Oncol; 2020; 10():598721. PubMed ID: 33643902 [TBL] [Abstract][Full Text] [Related]
12. Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules. Huang W; Deng H; Li Z; Xiong Z; Zhou T; Ge Y; Zhang J; Jing W; Geng Y; Wang X; Tu W; Dong P; Liu S; Fan L Front Oncol; 2023; 13():1255007. PubMed ID: 37664069 [TBL] [Abstract][Full Text] [Related]
13. Histological Subtype Classification of Non-Small Cell Lung Cancer with Radiomics and 3D Convolutional Neural Networks. Liang B; Tong C; Nong J; Zhang Y J Imaging Inform Med; 2024 Dec; 37(6):2895-2909. PubMed ID: 38861072 [TBL] [Abstract][Full Text] [Related]
14. Deep Features from Pretrained Networks Do Not Outperform Hand-Crafted Features in Radiomics. Demircioğlu A Diagnostics (Basel); 2023 Oct; 13(20):. PubMed ID: 37892087 [TBL] [Abstract][Full Text] [Related]
15. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer. Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504 [TBL] [Abstract][Full Text] [Related]
17. External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis. Garau N; Paganelli C; Summers P; Choi W; Alam S; Lu W; Fanciullo C; Bellomi M; Baroni G; Rampinelli C Med Phys; 2020 Sep; 47(9):4125-4136. PubMed ID: 32488865 [TBL] [Abstract][Full Text] [Related]
18. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening. Tu SJ; Wang CW; Pan KT; Wu YC; Wu CT Phys Med Biol; 2018 Mar; 63(6):065005. PubMed ID: 29446758 [TBL] [Abstract][Full Text] [Related]
19. Combined model integrating deep learning, radiomics, and clinical data to classify lung nodules at chest CT. Lin CY; Guo SM; Lien JJ; Lin WT; Liu YS; Lai CH; Hsu IL; Chang CC; Tseng YL Radiol Med; 2024 Jan; 129(1):56-69. PubMed ID: 37971691 [TBL] [Abstract][Full Text] [Related]
20. The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images. Zhang R; Wei Y; Shi F; Ren J; Zhou Q; Li W; Chen B BMC Cancer; 2022 Nov; 22(1):1118. PubMed ID: 36319968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]