These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29594269)

  • 1. Nano X-ray diffractometry device for nanofluidics.
    Mawatari K; Koreeda H; Ohara K; Kohara S; Yoshida K; Yamaguchi T; Kitamori T
    Lab Chip; 2018 Apr; 18(8):1259-1264. PubMed ID: 29594269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device.
    Morikawa K; Kazoe Y; Takagi Y; Tsuyama Y; Pihosh Y; Tsukahara T; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33182488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple approach for an optically transparent nanochannel device prototype.
    Liang F; Ju A; Qiao Y; Guo J; Feng H; Li J; Lu N; Tu J; Lu Z
    Lab Chip; 2016 Mar; 16(6):984-91. PubMed ID: 26891717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtoliter nanofluidic valve utilizing glass deformation.
    Kazoe Y; Pihosh Y; Takahashi H; Ohyama T; Sano H; Morikawa K; Mawatari K; Kitamori T
    Lab Chip; 2019 Apr; 19(9):1686-1694. PubMed ID: 30942790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels.
    Kazoe Y; Ikeda K; Mino K; Morikawa K; Mawatari K; Kitamori T
    Anal Sci; 2023 Jun; 39(6):779-784. PubMed ID: 36884162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis.
    Morikawa K; Ohta R; Mawatari K; Kitamori T
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions.
    Xu Y; Xu B
    Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive determination of concentration of nonfluorescent species in an extended-nano channel by differential interference contrast thermal lens microscope.
    Shimizu H; Mawatari K; Kitamori T
    Anal Chem; 2010 Sep; 82(17):7479-84. PubMed ID: 20698489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography.
    Wu C; Lin TG; Zhan Z; Li Y; Tung SCH; Tang WC; Li WJ
    Microsyst Nanoeng; 2017; 3():16084. PubMed ID: 31057852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection.
    Tsuyama Y; Morikawa K; Mawatari K
    Nanoscale; 2021 May; 13(19):8855-8863. PubMed ID: 33949427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography.
    Vanderpoorten O; Peter Q; Challa PK; Keyser UF; Baumberg J; Kaminski CF; Knowles TPJ
    Microsyst Nanoeng; 2019; 5():40. PubMed ID: 31636930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Ultranarrow Nanochannels with Ultrasmall Nanocomponents in Glass Substrates.
    Kamai H; Xu Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics.
    Nakao T; Kazoe Y; Morikawa K; Lin L; Mawatari K; Kitamori T
    Analyst; 2020 Apr; 145(7):2669-2675. PubMed ID: 32049074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction.
    Kazoe Y; Ugajin T; Ohta R; Mawatari K; Kitamori T
    Lab Chip; 2019 Nov; 19(22):3844-3852. PubMed ID: 31596292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible fabrication and applications of polymer nanochannels and nanoslits.
    Chantiwas R; Park S; Soper SA; Kim BC; Takayama S; Sunkara V; Hwang H; Cho YK
    Chem Soc Rev; 2011 Jul; 40(7):3677-702. PubMed ID: 21442106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion.
    Li L; Kazoe Y; Mawatari K; Sugii Y; Kitamori T
    J Phys Chem Lett; 2012 Sep; 3(17):2447-52. PubMed ID: 26292131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Streaming potential/current measurement system for investigation of liquids confined in extended-nanospace.
    Morikawa K; Mawatari K; Kato M; Tsukahara T; Kitamori T
    Lab Chip; 2010 Apr; 10(7):871-5. PubMed ID: 20379568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio.
    Wang S; Liu Y; Ge P; Kan Q; Yu N; Wang J; Nan J; Ye S; Zhang J; Xu W; Yang B
    Lab Chip; 2018 Mar; 18(6):979-988. PubMed ID: 29485661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular simulation study into the stability of hydrated graphene nanochannels used in nanofluidics devices.
    Williams CD; Wei Z; Shaharudin MRB; Carbone P
    Nanoscale; 2022 Mar; 14(9):3467-3479. PubMed ID: 35170614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.