These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29594269)

  • 21. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
    Uba FI; Hu B; Weerakoon-Ratnayake K; Oliver-Calixte N; Soper SA
    Lab Chip; 2015 Feb; 15(4):1038-49. PubMed ID: 25511610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable Formation of Aqueous/Organic Parallel Two-phase Flow in Nanochannels with Partial Surface Modification.
    Sano H; Kazoe Y; Kitamori T
    Anal Sci; 2021 Nov; 37(11):1611-1616. PubMed ID: 34054008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels.
    Kim S; Kim GH; Woo H; An T; Lim G
    ACS Omega; 2020 Feb; 5(7):3144-3150. PubMed ID: 32118130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence.
    Kazoe Y; Mawatari K; Sugii Y; Kitamori T
    Anal Chem; 2011 Nov; 83(21):8152-7. PubMed ID: 21942883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extended-nano chromatography.
    Shimizu H; Smirnova A; Mawatari K; Kitamori T
    J Chromatogr A; 2017 Mar; 1490():11-20. PubMed ID: 27623065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices.
    Shoda K; Tanaka M; Mino K; Kazoe Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32854246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis.
    Wang C; Ouyang J; Gao HL; Chen HW; Xu JJ; Xia XH; Chen HY
    Talanta; 2011 Jul; 85(1):298-303. PubMed ID: 21645702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy.
    Le TH; Mawatari K; Shimizu H; Kitamori T
    Analyst; 2014 Jun; 139(11):2721-5. PubMed ID: 24759977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dimension-reconfigurable bubble film nanochannel for wetting based sensing.
    Ma Y; Sun M; Duan X; van den Berg A; Eijkel JCT; Xie Y
    Nat Commun; 2020 Feb; 11(1):814. PubMed ID: 32041959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realization of Curved Circular Nanotubes Using In Situ Monitored Self-Assembly.
    Lin Z; Dai C; Cho JH
    Nano Lett; 2022 Mar; 22(5):2140-2146. PubMed ID: 35050632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing.
    Strychalski EA; Stavis SM; Craighead HG
    Nanotechnology; 2008 Aug; 19(31):315301. PubMed ID: 21828782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Periodic oscillation of ion conduction of nanofluidic diodes using a chemical oscillator.
    Zhang H; Hou J; Ou R; Hu Y; Wang H; Jiang L
    Nanoscale; 2017 Jun; 9(21):7297-7304. PubMed ID: 28524913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid filling method for nanofluidic channels utilizing the high solubility of CO2.
    Tamaki E; Hibara A; Kim HB; Tokeshi M; Ooi T; Nakao M; Kitamori T
    Anal Sci; 2006 Apr; 22(4):529-32. PubMed ID: 16760592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large scale lithography-free nano channel array on polystyrene.
    Xu BY; Xu JJ; Xia XH; Chen HY
    Lab Chip; 2010 Nov; 10(21):2894-901. PubMed ID: 20922216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing.
    Peng R; Li D
    Lab Chip; 2016 Oct; 16(19):3767-76. PubMed ID: 27539019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulating Ion Transport in a Nanochannel with Tandem and Parallel Structures via Concentration Polarization.
    Wu ZQ; Li ZQ; Wang Y; Xia XH
    J Phys Chem Lett; 2020 Jan; 11(2):524-529. PubMed ID: 31825632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel fluidic control method for nanofluidics by solvent-solvent interaction in a hybrid chip.
    Fu G; Zheng Z; Li X; Sun Y; Chen H
    Lab Chip; 2015 Feb; 15(4):1004-8. PubMed ID: 25563690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.