These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29594380)

  • 1. An Attempt to Find a Suitable Biomass for Biochar-Based Polypropylene Biocomposites.
    Das O; Kim NK; Hedenqvist MS; Lin RJT; Sarmah AK; Bhattacharyya D
    Environ Manage; 2018 Aug; 62(2):403-413. PubMed ID: 29594380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties.
    Das O; Sarmah AK; Bhattacharyya D
    Waste Manag; 2016 Mar; 49():560-570. PubMed ID: 26724232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites.
    Das O; Sarmah AK; Bhattacharyya D
    Waste Manag; 2015 Apr; 38():132-40. PubMed ID: 25677179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits.
    Domingues RR; Trugilho PF; Silva CA; Melo ICNA; Melo LCA; Magriotis ZM; Sánchez-Monedero MA
    PLoS One; 2017; 12(5):e0176884. PubMed ID: 28493951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sustainable and resilient approach through biochar addition in wood polymer composites.
    Das O; Sarmah AK; Bhattacharyya D
    Sci Total Environ; 2015 Apr; 512-513():326-336. PubMed ID: 25634737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications.
    Das O; Sarmah AK; Zujovic Z; Bhattacharyya D
    Sci Total Environ; 2016 Apr; 550():133-142. PubMed ID: 26808404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Design of Wood/Rice Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MABAC-Based Decision-Making Algorithm.
    Singh T; Pattnaik P; Aherwar A; Ranakoti L; Dogossy G; Lendvai L
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes.
    Takaya CA; Fletcher LA; Singh S; Anyikude KU; Ross AB
    Chemosphere; 2016 Feb; 145():518-27. PubMed ID: 26702555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical, Thermal, and Fire Retardant Properties of Rice Husk Biochar Reinforced Recycled High-Density Polyethylene Composite Material.
    Shah AUR; Imdad A; Sadiq A; Malik RA; Alrobei H; Badruddin IA
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37111974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites.
    Beigbeder J; Soccalingame L; Perrin D; Bénézet JC; Bergeret A
    Waste Manag; 2019 Jan; 83():184-193. PubMed ID: 30514465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes.
    Dunnigan L; Morton BJ; Ashman PJ; Zhang X; Kwong CW
    Waste Manag; 2018 Jul; 77():59-66. PubMed ID: 30008415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation.
    Xiong S; Zhang S; Wu Q; Guo X; Dong A; Chen C
    Bioresour Technol; 2014; 152():86-92. PubMed ID: 24280085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses.
    Zhang Y; Xu X; Cao L; Ok YS; Cao X
    Chemosphere; 2018 Nov; 211():1073-1081. PubMed ID: 30223322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils.
    Igalavithana AD; Lee SE; Lee YH; Tsang DCW; Rinklebe J; Kwon EE; Ok YS
    Chemosphere; 2017 May; 174():593-603. PubMed ID: 28193592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injection Molding of Highly Filled Polypropylene-based Biocomposites. Buckwheat Husk and Wood Flour Filler: A Comparison of Agricultural and Wood Industry Waste Utilization.
    Andrzejewski J; Barczewski M; Szostak M
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31739547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective utilization of wood waste recycled from construction and demolition (C&D): Products and characterization.
    Khodaei H; Olson C; Patino D; Rico J; Jin Q; Boateng A
    Waste Manag; 2022 Jul; 149():228-238. PubMed ID: 35752110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of thermal properties and acetaldehyde adsorption performance of sustainable composites using waste wood and biochar.
    Jeon J; Kim HI; Park JH; Wi S; Kim S
    Environ Res; 2021 May; 196():110910. PubMed ID: 33639144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforced polypropylene composites: effects of chemical compositions and particle size.
    Ashori A; Nourbakhsh A
    Bioresour Technol; 2010 Apr; 101(7):2515-9. PubMed ID: 19948401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of biochar use in building materials.
    Legan M; Gotvajn AŽ; Zupan K
    J Environ Manage; 2022 May; 309():114704. PubMed ID: 35176567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injection Molded Novel Biocomposites from Polypropylene and Sustainable Biocarbon.
    Abdelwahab MA; Rodriguez-Uribe A; Misra M; K Mohanty A
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31703289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.